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Abstract

We work out cotangent lift models for integrable systems with non-

degenerate singularities. We use different versions of the cotangent lift

technique for different kind of singularities (in the sense of Williamson).

1 Introduction. Three elementary motivating

examples

Hamiltonian integrable systems with non-degenerate singularities are widely

found in Mechanics problems. Three of the most classical examples are the

Harmonic Oscillator, the Simple Pendulum and the Spherical Pendulum.

1.1 The harmonic oscillator

Consider an ideal one-dimensional oscillating system consisting of a mass m

connected to a rigid foundation by way of a spring of stiffness constant k, with

no friction of any kind and, hence, with no loss of mechanical energy. The

Hamiltonian of the system is the sum of the kinetical and the elastic potential

energies. In terms of the natural coordinates of the system, which are the

position x and the velocity v of the mass, it writes as:

Ĥ(x, v) =
1

2
mv2 +

1

2
kx2 (1.1)

Applying the symplectic transformationx = q · 1
4
√
k/m

v = p · 4
√
k/m

(1.2)

The Hamiltonian becomes
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H(p, q) =
1

2

√
mk

(
p2 + q2

)
(1.3)

Dropping the physical constants, this Hamiltonian is exactly the normal

form of a one-dimensional system with an elliptic singularity at the origin, the

unique equilibrium point of the system.

1.2 The simple pendulum

The simple pendulum is another of the simplest models in classical mechanics.

The most natural approximation to its formulation is the Newtonian setting,

where we consider the forces and acting in the system formed by a mass m

attached to an end of a rigid massless rod of length l which has the other end

fixed. It is assumed that the mass moves in the vertical plane formed by the

vertical direction and the initial position and, since the rod has fixed length,

the natural coordinate is the angle θ ∈ [0, 2π)] with respect to the lower vertical

equilibrium position. Newton’s law states that the acceleration of the mass in

the direction of motion, which is always perpendicular to the direction of the

rod, is proportional to the total force in this direction of motion. Since the

only force in this direction is the component of the gravity force, Newton’s law

reduces to:

ma⊥ = F⊥ (1.4)

Taking into account that the acceleration is related to the angular coordinate

through a⊥(θ) = l ∂
2θ
∂t2 and that the force is also function of the angle through

F⊥(θ) = −mg sin θ, where g is the gravity acceleration, the equation rewrites as

the following 2nd order ODE:

∂2θ

∂t2
= −g

l
sin θ (1.5)

If we define ρ := ∂θ
∂t , (1.5) is equivalent to the Hamiltonian first order system

of ODEs:

{
∂θ
∂t = ρ
∂ρ
∂t = − gl sin θ

(1.6)

whose Hamiltonian is

Ĥ(θ, ρ) =
ρ2

2
− g

l
cos θ (1.7)

2



The first equilibrium point of (1.6) is found at θ = ρ = 0, and it is an sta-

ble point. Dropping out the physical constants, the Hamiltonian there has the

normal form H̄ = 1
2 (ρ2 + θ2), which corresponds to an elliptic singularity like

in the harmonic oscillator. We are more interested in the second equilibrium

point, found at θ = π, ρ = 0.

The Hamiltonian there can be expanded as:

H(θ, ρ) =
1

2

(
ρ2 − g

l
θ2
)

(1.8)

Dropping the physical constants, this Hamiltonian is corresponds to the

normal form of a one-dimensional system with a hyperbolic singularity at the

origin.

1.3 The spherical pendulum

A classical physical example of a singularity of focus-focus type comes from the

spherical pendulum. Consider a point of mass m attached to an end of a rigid

massless rod of length l. Assume that the other end of the rod is fixed at the

origin and that the mass can move freely as long as it remains attached to the

rod. The mass can move, then, on a sphere of radius l. The natural phase space

is the cotangent bundle T ∗S2.

Spherical coordinates are the natural setting to study the dynamics of the

spherical pendulum, while Cartesian coordinates are more appropriated to ana-

lyze the focus-focus singularity. The position of the point of mass will be given

by ~r = (x, y, z), with ‖~r‖ = l. The conjugate variable to ~r is the linear momen-

tum of the point, ~p = (px, py, pz) = m~̇r, which has to satisfy ~r · ~̇p) = 0 in order

to be contained in the tangent space of the sphere.

The Hamiltonian of the system is

H(~r, ~p) =
‖~p‖2

2m
+mgl

~r · ẑ
‖~r‖

(1.9)

where g accounts for the gravity acceleration and ẑ is the unit vector in the

z direction. There is another conserved quantity, the angular momentum in te

z direction: L := Lz = xpy − ypx. H and L satisfy {H,L} = 0 and are inde-

pendent almost everywhere. Hence, they form the Liouville integrable system

corresponding the spherical pendulum.
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There are two singularities in the pendulum system, corresponding to z = −l,
so ~r−1 = (0, 0,−l), and to z = l, so ~r1 = (0, 0, l). We focus on ~r1, the unstable

equilibrium. To study the system near z = l, we use local coordinates (x, y, z) =

(x, y,
√
l2 − x2 − y2). The conjugate momentum ~p = (px, py, pz) satisfies locally

that pz = 0. In these symplectic coordinates ω = dx ∧ dpx + dy ∧ dpy and the

Hamiltonian becomes

H =
1

2ml2
(
p2
x(l2 − x2) + p2

y(l2 − y2)− 2xypxpy
)

+mg(
√
l2 − x2 − y2 − l)

(1.10)

At this point, it is convenient to apply a symplectic scaling in order to

adimensionalize the Hamiltonian. We apply the transformation
x = ξ√

mν

px = pξ
√
mν

y = η√
mν

py = pη
√
mν

(1.11)

with ν =
√
g/l. In these local symplectic coordinates near the unstable equilib-

rium of the spherical pendulum, ω = dξ ∧ dpξ + dη ∧ dpη and the Hamiltonian

becomes:

H = ν

(
1

2
(p2
ξ + p2

η)− κ

2
(ξpξ + ηpη)2 +

1

κ
(
√

1− κρ2 − 1)

)
(1.12)

where ρ2 = ξ2 + η2, ν2 = g/l and 1/κ = ml2ν = mgl/ν.

Now, the Williamson normal form at the unstable equilibrium of the spher-

ical pendulum is achieved by the linear symplectic transformation

√
2ξ = q1 − p1,

√
2pξ = q1 + p1,

√
2η = q2 − p2,

√
2pη = q2 + p2 .

The Hamiltonian in the new coordinates is:

H = ν

(
p1q1 + p2q2 − κ

1

8
(q2 − p2)2 +

1

κ

√
1− κρ2 +

ρ2

2
− 1

κ

)
,

where p2 = p2
1 + p2

2, q2 = q2
1 + q2

2 and ρ2 = p2/2 + q2/2− (p1q1 + p2q2).

The quadratic part of the potential has been absorbed in the quadratic

normal form terms H2 = ν(p1q2 + p2q2). The remaining terms of the potential

are of order 4 and higher. The angular momentum in the new variables is

L = q1p2 − q2p1. So, the system F = (H,L) has a singularity of focus-focus

type.
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2 Non-degeneracy. Normal forms and Morse

Theory

Theorem 2.1 (Eliasson-Miranda-Zung). Let m ∈ M be a non-degenerate sin-

gularity in an integrable system on M given by f = (f1, . . . , fn). Then, there

exist symplectic local coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn) on an open

neighbourhood U ⊂M of m and a function g = (g1, . . . , gn) : U → Rn such that

its components are of one of the following forms:

• Elliptic: gj(q, p) = q2
j + p2

j

• Hyperbolic: gj(q, p) = qjpj

• Focus-focus: gj(q, p) = qjpj+1 − qj+1pj gj+1(q, p) = qjpj + qj+1pj+1

• Regular: gj(q, p) = pj

and m corresponds to the origin (q, p) = (0, 0) and {fi, gj} = 0 for all i, j.

3 The cotangent lift

Let M be a differential manifold and T ∗M its cotangent bundle. There is a

canonically linear form λ on T ∗M defined intrinsically by

〈λp, v〉 = 〈p, dπpv〉 for p ∈ T ∗M, v ∈ T (T ∗M)p

where π is the canonical projection. In local coordinates q1, . . . , qn, p1, . . . , pn,

the form is written as λ = p1dq1 + · · · pnqn and is called the Liouville 1-form.

Then, ω = −dλ is a symplectic form on T ∗M , meaning that T ∗M has a sym-

plectic structure.

Definition 3.1. Let ρ : G ×M → M be a group action of a Lie group G on

a smooth manifold M . For each g ∈ G, there is an induced diffeomorphism

ρg : M → M . The cotangent lift of ρg, denoted by ρ̂g, is diffeomorphism on

T ∗M given by

ρ̂g(q, p) := (ρg(q), ((dρg)
∗
q)
−1(p)), (q, p) ∈ T ∗M

which makes the following diagram commute:

T ∗M T ∗M

M M

π

ρ̂g

ρg

π
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Example 3.2. Let ρ : (R3,+)×R3 → R3 be the Lie group action corresponding

to a space translation defined by ρx(q) = q + x. Write (q, p) for an element of

the cotangent bundle T ∗R3 ∼= R6.

By definition, ρ̂x, the cotangent lift of ρx is

ρ̂x(q, p) = (ρx(q), ((dρx)
∗
q)
−1(p)) =

= (q + x, ((Id∗)−1(p)) = (q + x, p)

Example 3.3. Let ρ : SO(3,R) × R3 → R3 be a Lie group action defined by

ρA(q) = Aq. Write (q, p) for an element of T ∗q R3. By definition, ρ̂A, the cotan-

gent lift of ρA is

ρ̂A(q, p) = (ρA(q), ((dρA)
∗
q)
−1(p)) = (Aq, ((A∗)−1(p)) = (Aq,Ap),

where the last equality holds because A is orthogonal. CHECK the cotangent

lift of the angular momentum

4 A Mathematical perspective. Non-degenerate

singularities as cotangent lifts

INTRO integrable systems

INTRO symplectic geometry

The cotangent lift for a regular value of the moment map (where A-L-M

Theorem can be applied) is done in Miranda-Karshon POSAR THM i REF.

In the classical models of the harmonic oscillator, the simple pendulum

and the spherical pendulum one already finds the three different types of non-

degenerate singularities of Theorem 2.1 in its lowest dimensional case. A simple

elliptic singularity is appears in the harmonic oscillator (REFEQ), a simple hy-

perbolic singularity shows up in the simple pendulum (REFEQ) and a simple

focus-focus singularity arises in the spherical pendulum (REFEQ).

4.1 Cotangent lift of a double hyperbolic singularity

Take coordinates (x1, x2, y1, y2) such that the symplectic form is ω = dx1∧dy1+

dx2 ∧ dy2 and the moment map is F = (f1, f2) = (x1y1, x2y2).

If we compute the Hamiltonian vector field associated to f1 and f2, we obtain
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X1 =− ∂f1

∂y1

(
∂

∂x1

)
− ∂f1

∂y2

(
∂

∂x2

)
+
∂f1

∂x1

(
∂

∂y1

)
+
∂f1

∂x2

(
∂

∂y2

)
= (4.1)

=− x1
∂

∂x1
+ y1

∂

∂y1
= (−x1, 0, y1, 0) (4.2)

and

X2 =− ∂f2

∂y1

(
∂

∂x1

)
− ∂f2

∂y2

(
∂

∂x2

)
+
∂f2

∂x1

(
∂

∂y1

)
+
∂f2

∂x2

(
∂

∂y2

)
= (4.3)

=− x2
∂

∂x2
+ y2

∂

∂y2
= (0,−x2, 0, y2) (4.4)

Now, consider the following action:

ρ : (R× R)× R2 −→ R2

((s, t),

(
x1

x2

)
) 7−→

(
e−s 0

0 e−t

)
·
(
x1

x2

)

The differential of this action is computed in the following way. Consider

γ(r) = (x1, x2) + r(y1, y2). Then:

dρ : TR2 → TR2(
y1

y2

)
7→ d

dr
(ρ ◦ γ) |r=0=

d

dr

(
e−s(x1 + ry1)

e−t(x1 + ry1)

)
|r=0=

(
e−s 0

0 e−t

)
·
(
y1

y2

)
Then, ((dρ)∗)−1 acts as:(

y1

y2

)
7−→

(
es 0

0 et

)
·
(
y1

y2

)
And the cotangent lift ρ̂ associated to the group action is exactly

ρ̂ : T ∗R2 → T ∗R2 (4.5)
x1

x2

y1

y2

 7→

e−sx1

e−tx2

esy1

ety2

 (4.6)

Deriving the vector with respect to s and evaluating at (s = 0, t = 0), we

obtain exactly X1, while deriving the vector with respect to t and evaluating

at (s = 0, t = 0), we obtain exactly X2, the vector fields associated to the

hyperbolic singularity.
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4.2 Cotangent lift of an elliptic singularity

The cotangent lift in the elliptic case uses a complex moment map which is not

holomorphic. It is a formal development and by no means holomorphicity is

assumed.

Take complex coordinates (z, z̄) = (x+ iy, x− iy) such that the symplectic

form is ω = dz∧dz̄. The moment map in the elliptic case is F = f1 = x2 +y2 =

zz̄.

The Hamilton’s equations in this complex setting are:

ιXω = −df ⇐⇒ ιa ∂
∂z +b ∂

∂z̄
dz ∧ dz̄ = −∂f

∂z
dz− ∂f

∂z̄
dz̄ ⇐⇒

{
a = −∂f∂z̄
b = ∂f

∂z

(4.7)

If we compute the Hamiltonian vector field associated to f1, we obtain

X1 =− ∂f1

∂z̄

(
∂

∂z

)
+
∂f1

∂z

(
∂

∂z̄

)
(4.8)

=− z ∂
∂z

+ z̄
∂

∂z̄
= (−z, z̄) (4.9)

Now, consider the following action, which is the same that we used for the

hyperbolic cotangent lift but in complex coordinates:

ρ : R× C→ C
(t, z) 7→ e−tz

The differential of this action is computed in the following way. Consider

γ(r) = z + rz̄. Then:

dρ : TC→ TC

z̄ 7→ d

dr
(ρ ◦ γ) |r=0=

d

dr
e−t(z + rz̄) |r=0= e−t · z̄

Then, ((dρ)∗)−1 acts as

z̄ 7−→ et · z̄

And the cotangent lift ρ̂ associated to the group action is exactly

ρ̂ : T ∗C→ T ∗C (4.10)(
z

z̄

)
7→
(
e−tz

etz̄

)
(4.11)

Deriving the vector with respect to t and evaluating at t = 0, we obtain

exactly X1, the vector field associated to the elliptic singularity.

8



4.3 Cotangent lift of a focus-focus singularity

In a singularity of focus-focus type in a manifold of dimension 4, we can take

coordinates (x1, x2, y1, y2) in a way that the symplectic form is ω = dx1 ∧ dy1 +

dx2 ∧ dy2 and the moment map is F = (f1, f2) = (x1y2 − x2y1, x1y1 + x2y2).

If we compute the Hamiltonian vector field associated to f1 and f2, we obtain

X1 =− ∂f1

∂y1

(
∂

∂x1

)
− ∂f1

∂y2

(
∂

∂x2

)
+
∂f1

∂x1

(
∂

∂y1

)
+
∂f1

∂x2

(
∂

∂y2

)
= (4.12)

=x2
∂

∂x1
− x1

∂

∂x2
+ y2

∂

∂y1
− y1

∂

∂y2
= (x2,−x1, y2,−y1) (4.13)

and

X2 =− ∂f2

∂y1

(
∂

∂x1

)
− ∂f2

∂y2

(
∂

∂x2

)
+
∂f2

∂x1

(
∂

∂y1

)
+
∂f2

∂x2

(
∂

∂y2

)
= (4.14)

=− x1
∂

∂x1
− x2

∂

∂x2
+ y1

∂

∂y1
+ y2

∂

∂y2
= (−x1,−x2, y1, y2) (4.15)

Let G = S1×R and M = R2. Consider the action of a rotation and a radial

dilation of R2 given by

ρ : (S1 × R)× R2 → R2

((θ, t),

(
x1

x2

)
) 7→

(
e−t 0

0 e−t

)(
cos θ sin θ

− sin θ cos θ

)(
x1

x2

)
The differential of this group action at a point (x1, x2) is the following linear

map

dρ : TR2 → TR2 (4.16)(
y1

y2

)
7→ e−t

(
y1 cos θ + y2 sin θ

−y1 sin θ + y2 cos θ

)
(4.17)

Then, ((dρ)∗)−1 acts as:(
y1

y2

)
7−→ et

(
cos θ sin θ

− sin θ cos θ

)
·
(
y1

y2

)
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And the cotangent lift ρ̂ associated to the group action is exactly

ρ̂ : T ∗R2 → T ∗R2 (4.18)
x1

x2

y1

y2

 7→

e−t(x1 cos θ + x2 sin θ)

e−t(−x1 sin θ + x2 cos θ)

et(y1 cos θ + y2 sin θ)

et(−y1 sin θ + y2 cos θ)

 (4.19)

Deriving the vector with respect to θ and evaluating at 0 we obtain exactly X1 =

(x2,−x1, y2,−y1). While deriving the vector with respect to t and evaluating

at 0 we obtain exactly X2 = (−x1,−x2, y1, y2).

5 Reformulating Eliasson-Vey Theorem

Theorem 5.1. Any integrable system with a non-degenerate singularity is equiv-

alent in a neighbourhood of the singularity to the integrable system defined by

a cotangent lift with the cotangent symplectic structure. This cotangent lift can

be a combination of blocks of the following type, depending on the kind of sin-

gularity of the different components of the moment map:

1. Standard cotangent lift for hyperbolic singularities, corresponding to the

components of the form

fi = xiyi,

2. Complexified cotangent lift for elliptic singularities, corresponding to the

components of the form

fi = x2
i + y2

i ,

3. Cotangent lift of the complexification of a compact group for focus-focus

singularities, corresponding to the pairs of components of the form

fi = xiyi+1 − xi+1yi, fi+1 = xiyi + xi+1yi+1

6 Complexification of a Lie group

We have the following definition of the complexification of a compact Lie group.

Definition 6.1. Let K be a compact Lie group. An analytic complexification

of K is a complex analytic group G together with a Lie group homomorphism

i : K −→ G such that, if f : K −→ H is another Lie group homomorphism into

a complex analytic group H, then there exists a unique analytic homomorphism

F : G −→ H such that f = F ◦ i.
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In the same way, we can consider the complexification of a Lie algebra,

which is easier to define because it is only the complexification of a real vector

space. To get from a real Lie algebra representation to a complex one, we

extend the action of real scalars to complex scalars. In the case of real matrices,

complexification is essentially allowing complex coefficients and using the same

rules for multiplying matrices as before.

Definition 6.2. The complexification V C of a real vector space V is the space

of pairs (v1, v2) of elements of V with product by a+ ib ∈ C given by

(a+ ib)(v1, v2) = (av1 − bv2, av2 + bv1)

This definition makes it possible to think of the complexification of V as

V C = V + iV . Now, for any real Lie algebra g, the complexification gC is the set

of pairs of elements (X,Y ) of g, with the usual rule for the product by complex

scalars, which can be thought of as gC = g + ig.

The Lie bracket on g extends in a natural way to a Lie bracket on gC by:

[(X1, Y1), (X2, Y2)] = ([X1, X2]− [Y1, Y2], [X1, Y2] + [Y1, X2]),

which can be thought as the following computation:

[X1 + iY1, X2 + iY2] = [X1, X2]− [Y1, Y2] + i([X1, Y2] + [Y1, X2])

Example 6.3. The Lie group G = GL(n,R) has the Lie algebra gl(n,R) ⊂
gl(n,C) of real n×n matrices. Its complexification is nothing else than gl(n,C),

since gl(n,R)C = gl(n,R) + igl(n,R) = gl(n,C).

Example 6.4. The Lie group U(n) has the Lie algebra u(n) ⊂ gl(n,C) of anti-

Hermitian matrices. Since the product of the anti-Hermitian matrices by i gives

the Hermitian matrices, the complexification u(n)C of u(n) is exactly gl(n,C).

Remark 6.5. With these two examples, one can see that different Lie algebras

can have the same complexification.

Example 6.6. The Lie groups O(n,R) and SO(n,R) have the same Lie algebra,

since SO(n,R) is the connected component of O(n,R) that contains the iden-

tity. The complexification of the Lie algebra so(n,R) of the real anti-symmetric

matrices is naturally the Lie algebra of the complex anti-symmetric matrices

so(n,C) ⊂ gl(n,C), since so(n,R)C = so(n,R) + iso(n,R) = so(n,C).

The topology of the simple orthogonal group over the complex numbers is

quite simple. As well as SO(n,R), SO(n,C) is a connected Lie group, since

any element can be joined by a path to the identity. The elements of SO(n,C)
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can be thought as rotations and can be identified in a hyperbolic basis with the

invertible elements of C, i.e., with C \ {0}. The topology of this set can be, at

its turn, identified to the Cartesian product S × R.

6.1 The focus-focus singularity as a complexified model

The complexification of S1 ∼= SO(n,R) gives SO(n,C) ∼= S1×R. The cotangent

model of the focus-focus singularity in Example 4.3, based on the cotangent lift

of the action of the non-compact Lie group S1 × R, can be now seen as the

cotangent lift of the complexification of the compact Lie group S1.

Give an interpretation to the complex vector field given by Ẋ = AX, with

A ∈ SO(2,C).
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6.2 The quaternionic approach

The quaternionification of the cotangent lift can be created through the change:

qi = xi + xi+1i+ yij + yi+1k = xi + xi+1i︸ ︷︷ ︸
α

+ (yi + yi+1i)︸ ︷︷ ︸
β

j (6.1)

where we used that ij = k.

Then, the conjugate is

q̄i = xi − xi+1i− yij − yi+1k = ᾱ− β̄j

Now, compute

dqi ∧ dq̄i =(dxi + dxi+1i+ dyij + dyi+1k) ∧ (dxi − dxi+1i− dyij − dyi+1k) =

(6.2)

=2(dxi+1 ∧ dxi + dyi+1 ∧ dyi)i+ (6.3)

+2(dyi ∧ dxi + dxi+1 ∧ dyi+1)j+ (6.4)

+2(dyi+1 ∧ dxi + dyi ∧ dxi+1)k (6.5)

Take ω as

ω =
1

2
dqi ∧ dq̄i =

=(dxi+1 ∧ dxi + dyi+1 ∧ dyi)i+
+(dyi ∧ dxi + dxi+1 ∧ dyi+1)j+

+(dyi+1 ∧ dxi + dyi ∧ dxi+1)k

which lives in the space of the unit quaternions (does not have real part).

6.3 The octonions approach

Following [Fur12], we introduce octonions in order to take advantage of its alge-

braic properties to build a model for the cotangent bundle of a high-dimensional

complexified manifold.

The e1, . . . , e7 are the octonionic imaginary units
(
e2
n = −1

)
, apart from

the real e0 = 1, which multiply according to Figure 1. Any three imaginary

units on a directed line segment in Figure 1 act as if they were a quaternionic

triple. For instance, e6e1 = −e1e6 = e5, e1e5 = −e5e1 = e6, e5e6 = −e6e5 = e1,

e4e1 = −e1e4 = e2, etc. Octonionic multiplication harbours various symmetries,

such as index doubling symmetry: eiej = ek ⇒ e2ie2j = e2k, which can be seen

by rotating Figure 1 by 120 degrees.
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Figure 1: Octonionic multiplication rules
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