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Chapter 1

Introduction to Differential

Topology

In this chapter we mainly follow [GP74].

1.1 Basic tools in Differential Topology

1.1.1 A crash course on Differential Geometry

Definition 1.1.1 (Abstract smooth manifold). A smooth manifold is a two-

countable Hausdorff topological space X such that, for every p ∈ X, there exists

an open neighbourhood U ⊂ X and a mapping ϕ : U ! Rn which induces an

homeomorphism between U and ϕ(U) and such that given intersection Ui and

Uj , the mapping

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)! ϕj(Ui ∩ Uj)

is C∞. The dimension of the manifold is n.

Remark 1.1.2. We will usually assume X ⊆ Rn

Theorem 1.1.3 (Whitney). Every manifold X of dimension k can be embedded

into R2k.

Definition 1.1.4 (Smooth manifold). A smooth manifold is a two-countable

Hausdorff topological space X such that, for every p ∈ X, there exists ϕ :

U ! Rk, where U is an open neighbourhood of p (with the induced euclidean

topology) and ϕ is a local diffeomorphism.
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6 CHAPTER 1. INTRODUCTION TO DIFFERENTIAL TOPOLOGY

Remark 1.1.5. A diffeomorphism is a smooth map with smooth inverse.

Remark 1.1.6. We will use the following notation:

ϕ : Ui ⊂ X ⊂ Rn ! Vj ⊂ Rk are coordinate charts.

φ := ϕ−1 : Vj ! Ui are called parametrizations.

Example 1.1.7. The circle, S1 = {z ∈ C | ‖z‖ = 1}, is a smooth manifold of

dimension 1. It can be equipped with the following charts. Any point z ∈ S1

can be written as z = e2iπc for a unique c ∈ [0, 1). Define the map

νz : R −! S1

t 7−! e2iπt

For any c, the map νz restricted to the interval Ic = (c−1/2, c+1/2), namely

µz = νz|Ic is a homeomorphism from Ic to S1 \ {−z}, which is, in particular, a

neighbourhood of z. Then, ϕz := µ−1
z is a chart of S1 near z.

Example 1.1.8. A generalization of the previous example, the sphere Sn =

{(x0, . . . , xn) ∈ Rn+1 |
∑n
i=0 x

2
i = 1} ⊂ Rn+1. Two proper charts for Sn are

the North and South stereographic projections, ϕN and ϕS :

ϕN : Sn \ {(−1, 0, . . . , 0)} −! Rn

(x0, x1, . . . , xn) 7−! (1 + x0)−1 · (x1, . . . , xn)

ϕS : Sn \ {(+1, 0, . . . , 0)} −! Rn

(x0, x1, . . . , xn) 7−! (1− x0)−1 · (x1, . . . , xn)

Example 1.1.9. The Cartesian product X × Y of two manifolds X and Y is

a manifold. If {Uα, ϕα} and {Vβ , ψβ} are atlases for the manifolds X and Y

of dimensions m and n, respectively, then the collection {Uα × Vβ , ϕα × ψβ :

Uα × Vβ ! Rm × Rn} of charts is an atlas on X × Y .

Example 1.1.10. The n-torus Tn = S1 × · · · × S1 can be equipped with the

Cartesian product of charts of S1, i.e., with the charts {(ϕz1 , . . . , ϕzn)} where

each ϕi is a chart of S1.

Example 1.1.11. An open subset U ⊂ X of a manifold is also a manifold. Its

charts can be taken as restrictions ϕ|U of charts ϕ for M.

For instance, the real n × n matrices, Mat(n,R), form a manifold, which is

a vector space isomorphic to Rn2

. The subset GL(n,R) = {A ∈ Mat(n,R) |
detA 6= 0} is open. Hence it is a manifold.

Example 1.1.12. The real projective plane RPn ∼= Sn/x∼−x ∼= Sn/(Z/(2))

Definition 1.1.13 (Canonical definition of the tangent space at a point). The

tangent space of the manifold X at the point x ∈ X is Tx(X) := Im dφ0, where

φ0(0) = ϕ−1
0 (0) = x (ϕ0 is a centered chart).
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Remark 1.1.14. This definition is canonical, does not depend on the parametriza-

tion. Take two different parametrizations φ1 and φ2 and define h := (φ2)−1 ◦φ1,

which is smooth by definition. Then,

(dφ1)0 = (dφ2)0 ◦ h0,

so Im(dφ1)0 ⊆ Im(dφ2)0. Interchanging roles, we obtain that Im(dφ2)0 ⊆
Im(dφ1)0 and, hence, Im(dφ1)0 = Im(dφ2)0.

Remark 1.1.15. A consequence of Definition 1.1.13 is that the dimension of

Tx(X) is equal to the dimension of X.

Definition 1.1.16 (Derivative of an smooth mapping). Let f : X ! Y be a

smooth map between smooth manifolds. Suppose x ∈ X and y = f(x). Then,

(df)x : TxX ! TyY is defined as follows. Take any charts ϕi and ψj , centered

at x and y, respectively.

TxX TyY

Rk ∼= T0Rk Rl ∼= T0Rl

ϕi

(df)x

h

ψj

So (df)x := dψ−1
j ◦ h ◦ dϕi.

Remark 1.1.17. The chain rule holds.

1.1.2 Basics on Differential Geometry

Definition 1.1.18. A curve γ(t) on a smooth manifold M is a differentiable

map from (−ε, ε) ⊂ R to M .

Definition 1.1.19. Let f : M ! N be a differentiable map between smooth

manifolds. The linear tangent mapping of f : M ! N at q ∈ M , denoted by

(df)q, is defined as follows. If γ′(0) is the tangent vector to the curve γ(t) ∈M ,

dfq : Tq(M)! Tf(q)N assigns to it the tangent vector to the curve f(γ(t)) ∈ N ,

at t = 0.

This definition allows to draw the following commutative diagram:
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TM TN

M N

πM

df

f

πN

Definition 1.1.20 (Vector field 1). A vector field X over a manifold M is a

derivation. That is, it is a R-linear map X : C∞(M,R)! C∞(M,R) such that

it satisfies the Leibniz rule, i.e. X(f, g) = fX(g) + X(f)g. A vector Xp at a

point p ∈M satisfies Xp(f, g) = f(p)Xp(g) +Xp(f)g(p).

The set of all vector fields over a manifold is X(M).

Definition 1.1.21 (Vector field 2). A vector Xp at a point p ∈M is an equiv-

alence class [γ] of paths γ : (−ε, ε) ! M such that γ(0) = p, γ̇(0) = Xp and

γ̃ ∼ γ if d(ϕ ◦ γ)/dt|t=0 = d(ϕ ◦ γ̃)/dt|t=0 for any coordinate chart (uα, ϕα).

The association of a vector Xp to each point p ∈M defined a vector field.

Definition 1.1.22 (Tangent bundle 1). The tangent bundle TM of a manifold

M is defined as TM =
⊔
p∈M TpM = {(p,Xp) | p ∈ M,Xp ∈ TpM}, and is

equipped with the natural projection π : (p,Xp) 7! p : TM !M .

Remark 1.1.23. TM is a smooth manifold of dimension 2 · dimM .

Definition 1.1.24 (Vector field 3). A vector field X over a manifold M is a

map X : p 7! Xp : M ! TM such that π ◦X = idM . In other words, a vector

field is a section of the tangent bundle.

We introduce a definition that will be used later.

Definition 1.1.25 (Lie Algebra). A Lie algebra is a pair (X(M), [·, ·]) such

that X(M) is a vector space and such that the Lie bracket [·, ·] : X(M) ×
X(M) ! X(M) is an operator which is skew-symmetric, bilinear and satisfies

Jacobi identity ([X,Y ](f) = X(Y (f))− Y (X(f))).

Definition 1.1.26. An integral curve γ of a vector field X ∈ X(M) is a curve

γ : (−ε, ε)!M such that γ′(t) = X(γ(t)).

Locally, integral curves always exist. Take coordinates (Uα, ϕα = (x1, . . . , xn))

and X =
∑n
i=1X

i∂/∂xi. Then, the equality writes as

n∑
i=1

γ′i(t)
∂

∂xi
=

n∑
i=1

Xi(γ(t))
∂

∂xi
⇐⇒ γ′i(t) = Xi(γ(t)),

which is a system of ODE’s, whose solution exists locally but not always globally.
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Definition 1.1.27. A vector field X ∈ X(M) is complete when all its integral

curves exist globally (they can be extended to all t ∈ R).

Exercise 1.1.28. If M is a compact manifold and X ∈ X(M), then X is complete.

Definition 1.1.29 (Flow of a vector field). Assume M is a compact manifold.

Then, the flow φ of X ∈ X(M) is given by

φ : M × R −! M

(x, t) 7−! γXx (t)

where γXx (t) is an integral curve of X passing through x.

It is immediate to check, from the definition, that any flow φ satisfies the

following properties:

• φ(x, 0) = x.

• ∀t ∈ R, φ̃t(x) := φ(x, t) is a diffeomorphism.

• φ(φ(x, s), t) = φ(x, s+ t).

Consider two vector fields X,Y ∈ X(M). With the idea of deriving Y with

respect to X, one could naively write

lim
t!0

Y (γXp (t))− Y (p)

t
,

where γXp (t) is the flow of X, but this expression is not well defined since

Y (γXp (t)) ∈ TγXp (t)M and Y (p) ∈ TpM , so we can not subtract them.

Instead, we use the derivative of γXp (t), that fixes it since dγXp (t) : TγXp (t)M !

TpM . Then, we can write

lim
t!0

(dγXp (−t))(Y (γXp (t)))− Y (p)

t
,

which is well defined. This is how we define the Lie derivative.

Definition 1.1.30 (Lie derivative). For any two vector fields X,Y ∈ X(M),

the Lie derivative of Y with respect to X is

LXY :=
d

dt
(dγXp (−t))(Y (γXp (t)))|t=0.
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The Lie bracket that appears in the definition of a Lie algebra (1.1.25) co-

incides with the definition of the Lie derivative, i.e. [X,Y ] = LXY .

If X is a smooth vector field on M , the application of dfq to X, denoted by

f∗X, is called the pushforward.

The linear tangent mapping is also called the differential of f at q ∈ M .

For a smooth vector field X ∈ X(M), the differential acts on X exactly as

(dfq)(X) = X(f). It is more intuitive, though, to think that it is the directional

derivative of f with respect to the field X. Notice that dfq is an element of

(TqM)∗, the dual of TqM .

Definition 1.1.31. Given two vector fields X,Y ∈ X(M), the Lie bracket of

vector fields between X and Y is defined as the field [X,Y ] that assigns to each

q ∈M the tangent vector given by

[X,Y ]p(f) = Xp(Y (f))− Yp(X(f)).

Definition 1.1.32. A differential r-form (or, simply, a r-form) α on a smooth

manifold M consists on assigning to each q ∈ M an element αq of ∧r(TqM)∗,

where ∧r means the wedge product of r dual vector spaces. The space of all

r-forms on M is denoted by Ωr(M).

k-forms satisfy α ∧ β = (−1)|α||β|β ∧ α, where |α| is the degree of the form

α.

When a differential form α ∈ Ωr(M) satisfies dα = 0, it is called a closed

form. If α = dβ, for some β ∈ Ωr−1(M), it is called an exact form.

Definition 1.1.33. Let X,X2, . . . , Xr ∈ X be smooth vector fields and α ∈
Ωr(M) an r-form. The interior product ιXα of α with X is a r−1-form that is

defined as

ιXα(X2, . . . , Xr) = α(X,X2, . . . , Xr).

It is also called the contraction between α and X.

Definition 1.1.34. Let α be a differential r-form on a smooth manifold M .

The exterior derivative of α is the differential (r+1)-form dα defined in the

following way. If X0, X1, . . . , Xr are smooth vector fields defined on M , then

dα(X0, . . . , Xr) =
∑
i

(−1)iXi(α(X0, . . . , X̂i, . . . , Xr)) +

+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j . . . , Xr),
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where [·, ·] is the Lie bracket of vector fields and X̂i denotes the omission of the

element Xi.

Axiomatically, the exterior derivative can be defined in the following way:

Theorem 1.1.35. For each k, ∃d : Ωk(M)! Ωk+1(M) such that:

• d is R-linear.

• d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.

• d coincides with the usual differential operator in Ω0(M).

• If f ∈ Ω0(M), then d(df)) = 0.

The exterior derivative satisfies the following properties:

1. If U ⊂M is open, then α|U = β|U ⇒ dα|U = dβ|U .

2. d2 = 0.

3. d(fdx1 ∧ · · · ∧ dxn) = df ∧ dx1 ∧ · · · ∧ dxn.

Theorem 1.1.36. Let Mn be a manifold. Let ∂M be the boundary of M and

i : ∂M ↪! M the inclusion. Let α ∈ Ωn−1(M) be a differential form with

compact support. Then, ∫
M

dα =

∫
∂M

i∗α.

The generalization of the Lie bracket between vector fields is the Lie deriva-

tive. In the more general definition, the Lie derivative LXR evaluates the change

of a tensor field R along the flow of a particular vector field X on a smooth man-

ifold M . We list the three most used Lie derivatives:

• The Lie derivative of a scalar function f ∈ C(M) with respect to X is

LXf = X(f), the directional derivative of f with respect to the X field.

• The Lie derivative of a vector field Y ∈ X(M) with respect to X is LXY =

[X,Y ], the Lie bracket.

• The Lie derivative of a r-form α ∈ Ωr(M) with respect to X is LXα =

ιXdα+ dιXα, which is known as Cartan’s magic formula.
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Definition 1.1.37. Let M be a differential manifold. For a point q ∈ M ,

consider the set of all tangent vectors on M at q and denote it by TqM . Then,

TM , the tangent bundle of M , is defined as the disjoint union of all the sets of

tangent vectors, i.e.:

TM :=
⊔
q∈M

TqM.

It is equipped with the canonical projection

π : TM −! M

(q, v) 7−! q

In the same way, the cotangent bundle of M , T ∗M , is defined as the dual

vector bundle over M , dual to the tangent bundle TM of M . It is also equipped

with the canonical projection

π : T ∗M −! M

(q, p) 7−! q

Definition 1.1.38. Let ϕ : M ! N be a smooth map and let f : N ! R be a

smooth function. The pullback of f by ϕ is a smooth map defined by

(ϕ∗f)(q) := f(ϕ(q)), q ∈M.

Let α ∈ Ωr(N) be a differential r-form on N . Let X1, . . . , Xr ∈ X(M) be smooth

vector fields on M . The pullback of α by ϕ is a differential r-form defined by

(ϕ∗α)q(X1, . . . , Xr) := αϕ(q)(dϕq(X1), . . . , dϕq(Xr)), q ∈M.

Example 1.1.39. Consider the 1-form α = xdy − ydx and the usual change to

polar coordinates:

ϕ : R× S1 −! R2

(r, θ) 7−! (r cos θ, r sin θ)

To compute ϕ∗α, the pullback of α by ϕ, we have two methods:

Method 1.

(ϕ∗α)(r,θ) = r cos θ d(r sin θ)− r sin θ d(r cos θ) =

= r cos θ(sin θ dr + r cos θ dθ)− r sin θ(cos θ dr − r sin θ dθ) =

= r2 cos2 θ dθ + r2 sin2 θ dθ = r2 dθ
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Method 2.

(ϕ∗α)(r,θ)(vr, vθ) =
(
−r sin θ r cos θ

)(cos θ −r sin θ

sin θ r cos θ

)(
vr
vθ

)
=

=
(
0 r2

)(vr
vθ

)
=⇒ ϕ∗α = r2 dθ

The pullback acts nicely on wedge product of differential forms, i.e., f∗(α ∧
β) = f∗α ∧ f∗β.

The pullback also acts nicely with the exterior derivative, i.e., f∗(dα) =

d(f∗α).

Differential forms are a tool to measure k-volumes.

Example 1.1.40. Let M be a smooth manifold. Let α ∈ Ω1(M) be a 1-form

and let γ : I ! M be a differentiable curve on the manifold. Then, Lenα(γ) =∫
I
γ∗α =:

∫
γ
α.

Example 1.1.41. Let Mn be a smooth manifold. Let ω ∈ Ωn(M) be a volume

form and let (U,ϕ) be a local coordinate chart. Then, Volω(U) =
∫
U
ϕ∗ω. This,

together with a partition of unity (see def 1.6.1), makes it possible to define∫
M
ω.

Example 1.1.42. If ψ : Sk ! Mn is an immersion, then we can define
∫
S
α for

an α ∈ Ωk(M).

1.2 De Rham Cohomology

1.3 Transversality and Normal Forms

1.3.1 The Inverse Function Theorem, Immersions, Sub-

mersions, the Regular Value Theorem

In many cases, new manifolds are created from considering submanifolds. Differ-

ential Topology offers a technique in this direction that consists in considering

objects that cut transversally.

Theorem 1.3.1. Suppose f : X ! Y is a smooth map whose derivative at any

point x ∈ X is an isomorphism. Then, f is a local diffeomorphism.

An immediate consequence of the theorem is that, under its hypotheses,

dimX = dimY . Going in the other direction, if we know that dimX < dimY ,
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the best we can get is that f : x ! Y is an immersion. This is the case if, for

every x ∈ X, (df)x is injective. If, on the contrary, dimX > dimY , the best

we can reach is a submersion, and this is the case if, for every x ∈ X, (df)x is

exhaustive.

Theorem 1.3.2 (Local Immersion Theorem). Suppose f : X ! Y is an immer-

sion at a point x ∈ X, and let y = f(x) ∈ Y . Assume dimX = k < l = dimY .

Then, there exist local coordinates around x and y such that

f(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

Proof. Consider the following commutative diagram:

X Y

U V

f

g

φ ψ
(1.3.1)

with φ(0) = x and ψ(0) = y.

We seek to modify g in order to apply the Inverse Function Theorem. As

dg0 : Rk ! Rl is injective, there exists a linear change of coordinates that

transforms it into the matrix

(
Ik
0

)
l×k

. And define G : U × Rl−k ! Rk by

G(a, al+1, ..., ak) = (g(a), al+1, ..., ak) −! dG0 =

(
dg0 0

0 dIdl−k

)
= Idk.

(1.3.2)

So G is a local diffeomorphism at 0. By construction, g = π ◦G (where π is

the local submersion or projection in Euclidean spaces). Finally,

X
f // Y

U

φ

OO

π // V

ψ ◦ G

OO

(1.3.3)

Exercise 1.3.3. Is it true that the image of an immersion always a submanifold?

Prove it or give a counterexample.
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Definition 1.3.4. An immersion that is injective and proper is called an em-

bedding.

Theorem 1.3.5 (Local Submersion Theorem). Suppose f : X ! Y is a sub-

mersion at a point x ∈ X, and let y = f(x) ∈ Y . Then, there exist lo-

cal coordinates around x and y such that f(x1, . . . , xk) = (x1, . . . , xl), where

dimX = k > l dimY .

Proof. The proof of this theorem is just like proof of the local classification of

immersions. Consider the following commutative diagram:

X Y

U V

f

g

φ ψ
(1.3.4)

with φ(0) = x and ψ(0) = y.

Since dg0 : Rk ! Rl is surjective, there exists a linear change of coordinates

that transforms it into the matrix (Il|0)l×k. Define G : U ! Rk by

G(a, al+1, ..., ak) = (g(a), al+1, ..., ak) −! dG0 =

(
dg0 0

0 dIdl−k

)
= Idk.

(1.3.5)

So G is a local diffeomorphism at 0. Then G is locally invertible, and G−1

exists as diffeomorphism of some open neighborhood U ′, of 0, into U . By con-

struction, g = π ◦G (where π is the local submersion or projection in Euclidean

spaces). Finally,

X
f // Y

U ′

φ ◦ G−1

OO

π // V

ψ

OO

(1.3.6)

We have shown that the canonical submersion π is equivalent to any sub-

mersion f .

Definition 1.3.6. The codimension of an arbitrary submanifold Z of a manifold

X is codimZ = dimX − dimZ
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Theorem 1.3.7. Let f : X ! Y be an embedding, i.e., an injective immersion,

which is proper (that is, for every compact in Y , its preimage is compact). Then,

the image of f is a submanifold.

Definition 1.3.8. For a smooth map of manifolds f : X ! Y , a point y ∈ Y is

a regular value for f if dfx : Tx(X)! Ty(Y ) is exhaustive at every point x such

that f(x) = y. In this case, x ∈ X is called a regular point. If a point x ∈ X
is not a regular point, it is called a critical point. In this case, y = f(x) ∈ Y is

not surjective (exhaustive) and y is called a critical value.

Theorem 1.3.9 (Regular Value Theorem). Let f : X ! Y be a smooth map

between smooth manifolds. For every regular value y ∈ Y , f−1(y) is either ∅ or

a submanifold of dimension dimX − dimY and Tf−1(y)X ∼= ker(df)x.

Proof. We have to work locally. Fix a given point x in the preimage of y

(x ∈ f−1(y)).

By the Local Submersion Theorem (1.3.5), there exist coordinates in some

open neighborhoods of x, y such that f(x1, ..., xk) = (x1, ..., xl) for l ≤ k and

y = (0, ...., 0). If V is the neighborhood of x. Then f−1(y)
⋂
V is the set of

points where x1 · · · = xl = 0 because f(f−1(y)) = 0 in an enough small neigh-

borhood of x where Theorem 1.3.5 holds true. The functions xl+1, ..., xk form,

therefore, a coordinate system on the set f−1(y)
⋂
V (which is a relatively open

subset, what means that is open in the induced topology). So, together, these

functions then form a diffeomorphism between the set f−1(y) and an Euclidean

space.

We also have, by the fact that y is a regular value, a surjection of tangent

spaces from x to y. This ensures the smoothness of the solution set f−1(y), of

the inverse function.

Finally, as the set f−1(y) is cut out by these functions xl+1, ..., xk , then

dim(f−1(y)) = k − (l + 1) + 1 = k − l = dimX − dimY (1.3.7)

1.3.2 Transversality

Definition 1.3.10. A mapping f : X ! Y is said to be transversal to the

submanifold Z ⊂ Y , and it is denoted by f t Z, if the transversality equation

Im dfx + TyZ = TyY holds at every x = f−1(y) ∈ f−1(Z).
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Example 1.3.11. If f is the inclusion map i : X ! Y , the transversality equation

becomes TxX + TyZ = TyY .

Theorem 1.3.12. If the smooth map f : X ! Y is transversal to a submanifold

Z ⊂ Y , then the preimage f−1(Z) is a submanifold of X. Furthermore, the

codimension of f−1(Z) in X equals the codimension of Z in Y .

Example 1.3.13. One particular case of transversality of f : X ! Y with Z is

when Z = {y}, with y ∈ Y . It is the case of the Regular Value Theorem.

If Z is a point y ∈ Y , then TyZ = {0}. Thus, transversality holds if and only

if Im dfx = TyY , i.e., if and only if f is regular at f−1(y), where f : X ! Y . So

transversality includes regularity as a special case.

Remark 1.3.14. If f is the inclusion i : X ! Y and Z ⊂ Y , then i−1(Z) = X∩Z
and Im dix = TyY , where y = f(x). The transversality equation is written as

TxY + TxZ = TxY , which is obviously true, so X t Z.

Theorem 1.3.15. The intersection of two transversal submanifolds X and Z

of Y is a transversal submanifold. Moreover, codim(X ∩ Z) = codim(X) +

codim(Z).

Example 1.3.16. Take f : t 7! (0, t) : R ! R2 and Z = {(x, y) ∈ R2 | y = 0}.
Then, f is transversal to Z.

Now take f : t 7! (t, t2) : R ! R2 and Z again as the x-axis.Then, f is not

transversal to Z because at zero the span of the tangent vectors is the same.

Example 1.3.17. The plane xy and the z axis intersect transversally:

< (1, 0, 0), (0, 1, 0) > + < (0, 0, 1) >= T0(xy) + T0(z) = (1.3.8)

= T0(R3) =< (1, 0, 0), (0, 1, 0), (0, 0, 1) > (1.3.9)

Example 1.3.18. The xy plane and the plane spanned by < (3, 2, 0), (0, 2, 1) >

are transversal:

As before, we want Ty(X) + Ty(Z) = Ty(Y ). That is, the generated space

by Ty(X) and by Ty(Z) is indeed R3 and it suffices that the matrix generated

by 3 of these 4 vectors is non-degenerate. Indeed:

∣∣∣∣∣∣
1 0 0

0 1 0

0 2 1

∣∣∣∣∣∣ = 1 6= 0 (1.3.10)

Example 1.3.19. The x axis and the plane spanned by < (1, 2, 0), (1, 1, 0) > are

not transversal:
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∣∣∣∣∣∣
1 0 0

1 2 0

1 1 0

∣∣∣∣∣∣ = 0 (1.3.11)

Example 1.3.20.

c components︷ ︸︸ ︷
Ra × {0} and

c components︷ ︸︸ ︷
{0} × Rb are transversal in Rc if a+ b ≥ c

If a+ b < c it is not true, because we have the following matrix:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ... 0 ... 0 ... 0 ... 0

0
. . . 0 ... 0 ... 0 ... 0

0 ... 1 ... 0 ... 0 ... 0

0 ... 0 ... 0 ... 1 ... 0

0 ... 0 ... 0 ... 0
. . . 0

0 ... 0 ... 0 ... 0 ... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (1.3.12)

Example 1.3.21. Let V be a vector space. V × {~0} and 4V (the diagonal) are

transversal in V × V :

∀(~u,~v) ∈ V × V as (~u,~v) = (~u, 0) − (~v, 0) + (~v,~v) = (~u − ~v, 0) + (~v,~v)

and (~u − ~v, 0) ∈ V × {~0} and (~v,~v) ∈ 4V . Thus the two subspaces intersect

transversally (in ~0× 0).

Example 1.3.22. The subgroup of symmetric matrices (S(n) = {A ∈ M(n) :

At = A}) and skew symmetric matrices (At = −A) are transversal in M(n):

We can express ∀C ∈M(n) as C = 1
2 (C+Ct) + 1

2 (C−Ct) and 1
2 (C+Ct) ∈

S(n) and 1
2 (C−Ct) is a skew symmetric matrix. Thus both, subspaces intersect

transversally.

1.4 Homotopy and Stability

The idea of stability is that something is stable if it remains the same after a

small perturbation.

Definition 1.4.1. Let X and Y be two smooth manifolds and f0, f1 : X ! Y

two smooth functions. An homotopy between f0 and f1 is a continuous map

F : X × [0, 1] ! Y such that, for every x ∈ X, F (x, 0) = f0(x) and F (x, 1) =

f1(x). We also call f1 a deformation of f0 and denote F (x, t) by ft(x).

Remark 1.4.2. We will always assume that our homotopies are smooth.

Remark 1.4.3. Homotopy is an equivalence relation on smooth maps from X to

Y and the equivalence class is its homotopy class.
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Definition 1.4.4. A property is called stable if, whenever f0 : X ! Y possesses

the property and ft : X ! Y is an homotopy of f0, then, for some ε > 0, and

for each t ∈ (0, ε), ft also possesses this property.

Example 1.4.5. Consider curves in the plane., i.e., smooth maps from R to R2.

The property that a curve passes through the origin is not stable since a small

wiggle can immediately distort a smooth curve to avoid 0. The transversal

intersection with the x-axis is, on the other hand, a stable property.

Example 1.4.6. The condition detA 6= 0 is stable.

Theorem 1.4.7 (Stability Theorem). The following classes of smooth maps of

a compact manifold X into a manifold Y are stable classes:

1. Local diffeomorphisms,

2. Immersions,

3. Submersions,

4. Embeddings,

5. Maps transversal to any fixed submanifold Z ⊂ Y ,

6. Diffeomorphisms.

Proof. We are going to prove that immersions are a stable class. It automatically

implies that local diffeomorphisms are a stable class, because a local diffeomor-

phism is an immersion in which the target space has the same dimension than

the source space.

Assume that f : X ! Y is a smooth immersion and X is compact. Assume

that ft(x) is an homotopy of f . We must produce an ε > 0 such that ft is an

immersion for all t ∈ (0, ε). Equivalently, we have to find an ε > 0 such that

d(ft)x is injective for every (x, t) ∈ X × (0, ε).

By hypothesis, f0 = f : X ⊂ Rk ! Y ⊂ Rl (with k < l) is an immer-

sion. Then, if we consider d(f0)x0 , with x0 ∈ X, its injectivity is provided by

hypothesis. It implies that the l × k differential matrix(
∂(f0)l
∂xk

(x0)

)
i,j

contains a k × k submatrix C which is non singular.



20 CHAPTER 1. INTRODUCTION TO DIFFERENTIAL TOPOLOGY

The determinant of a matrix is a continuous mapping, and so is each com-

ponent ∂(ft)l
∂xk

(x0) of the differential matrix with respect to t and x. Then, since

detC 6= 0, for any (x, t) in a neighbourhood U of (x0, 0) the submatrix C has

a non zero determinant. Hence, d(ft)x is injective ∀(x, t) in this neighbourhood.

Since X is compact, any open neighbourhood U of X×{0} contains X×[0, ε]

for some ε > 0. Then, d(ft)x is injective in X × [0, ε] and we have stability of

immersions.

1.5 Sard’s Theorem and Morse Functions

1.5.1 Sard’s Theorem

Theorem 1.5.1 (Sard’s Theorem, ”almost every point” version). Let f : X !

Y be a smooth map between smooth manifolds. Then, almost every point in Y is

a regular value of f . In other words, for almost every y ∈ Y , dfx : TxX ! TyY

is surjective for any x ∈ f−1(y).

We introduce the concept of zero measure to restate Sard’s Theorem.

Definition 1.5.2. A set A ⊂ Rn has zero measure if it can be covered by

a countable number of regular solids with arbitrary small measure (volume).

Namely, for every ε > 0, there exists a countable covering {S1, . . . }∞i=1 such

that A ⊂ ∪∞i=1Si and such that
∑∞
i=1 Volume(Si) < ε.

The concept of zero measure can be extended to manifolds in local parametriza-

tions in the following way.

Definition 1.5.3. Given a manifold X, a set A ⊂ X has zero measure if ϕ−1
α (A)

has zero measure for every parametrization ϕα.

Theorem 1.5.4 (Little Sard’s Theorem). Let f : X ! Y be a differentiable

map between smooth manifolds. Suppose dimX < dimY . Then, f(X) has zero

measure.

Definition 1.5.5. Let f : X ! Y be a smooth map between smooth manifolds.

A point x ∈ X is a critical point of f if dfx is not surjective. A point y ∈ Y is

a critical value of f if there exists x ∈ f−1(y) such that x is a critical point.

Theorem 1.5.6 (Sard’s Theorem, ”zero measure” version). Let f : X ! Y be

a smooth map between smooth manifolds. Then, the set of critical values of f

has measure zero.
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Corollary 1.5.7. The regular values of any smooth map f : X ! Y are dense

in Y . In fact, if fi : Xi ! Y is a countable set of smooth maps, with Xi a

countable set of smooth manifolds, the set of points in Y that are simultaneously

regular values for all fi is dense in Y .

Proof. For any i, consider Ci to be the set of y ∈ Y such that y is a critical value

of fi. By Sard’s Theorem, we know that Ci has zero measure. For any ε > 0

and for each i, consider {Si1, Si2, . . . }, a countable covering of Ci (Ci = ∪jSij),
such that each Sij has zero measure and

∞∑
j=1

V olume(Sij) < ε/2i =: εi.

Then,
∑∞
i=1

∑∞
j=1 V olume(S

i
j) <

∑∞
i=1 εi =

∑∞
i=1 ε/2

i = ε

Remark 1.5.8. It is not true that the set of critical points of a function has

measure zero. For instance, take f : X ! Y a constant function and then any

point of X is a critical point of f .

Sard’s Theorem can be applied to prove that Morse functions are ”dense”

and to prove the Whitney Embedding Theorem.

1.5.2 Morse Functions

Consider a differentiable manifold M without boundary, and let f : M ! R be

a smooth function.

Definition 1.5.9. A point p ∈ M is called a critical point of the function f if

the tangent map dfp : TpM ! TR ∼= R is zero. In this case, we say that f(p) is

a critical value.

Definition 1.5.10. Let p be a critical point of a function f ∈ C∞(M). The

Hessian of f at p is the bilinear map

Hp[f ] : TpM × TpM −! R
(u, v) 7−! v(Xu(f))

Lemma 1.5.11. The Hessian Hp[f ] is well defined (this means, it does not

depend on the choice of Xu), and it is a bilinear and symmetric map.

Proof. We check that it is symmetric:

Hp[f ](v, w)−Hp[f ](w, v) = v(Xw(f))−w(Xv(f)) = Xv|p (Xw(f))−Xw|p (Xv(f)) =

= [Xv, Xw]|p (f) = dpf · [Xv, Xw] = 0,
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where the last term is zero because dpf = 0 because p is a critical point for f .

Thus, Hp[f ](v, w) = Hp[f ](w, v).

Looking again at the definition,

Hp[f ](v, w) = v(Xw(f)),

we see that this does not depend on the extension Xv, as in the expression it

only depends on Xv(p) = v. On the other hand, Hp[f ](v, w) = Hp[f ](w, v), so,

by the same argument, the Hessian does not depend on the extension chosen

for w. This proves that the Hessian is well defined.

Finally, the Hessian is bilinear, because

Hp[f ](αu+ βv,w) = (αu+ βv)(Xw(f)) =

= αu(Xw(f)) + βv(Xw(f)) = αHp[f ](u,w) + βHp[f ](v, w),

and the same argument applies to the second component by symmetry.

Remark 1.5.12. If (x1, ..., xn) is a local chart centered at a critical point p ∈M
and f̃ is the local representation of f in this chart, then the local expression of

Hp[f ] is the matrix

H̃p[f ] :=

(
∂2f̃

∂xi∂xj
(0)

)
i,j

.

Definition 1.5.13. The index of p is the dimension of the maximal subspace

V ⊂ TpM such that Hp[f ]|V is negative definite.

Definition 1.5.14. A non-degenerate critical point of f is a point p such that

in any local chart a local representation Hp[f ] has maximal rank.

Remark 1.5.15. The definitions of index and non-degenerate critical point are

independent of the choice of coordinates, because the index and nullity of a

matrix are independent of the basis chosen to represent it, so they are also

invariant under any change of coordinates.

Definition 1.5.16. A function f ∈ C∞(M) is a Morse function if all its critical

points are non-degenerate. If f is a Morse function, we define

Crit(f) = {p ∈M |dfp = 0},

Critk(f) = {p ∈ Crit(f) | p has index k}.

From the Local Submersion Theorem (1.3.5), the neighbourhood of any reg-

ular point is regular. For the case of a critical point, we have the Morse Lemma.
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Lemma 1.5.17 (Morse Lemma). Let p ∈ Critk(f). Then, there is a local

coordinate system (U, (y1, ..., yn)) centered at p such that

f |U = f(p)− y2
1 − ...− y2

k + y2
k+1 + ...+ y2

n.

Proof. A local expression f̃ of f can be derived from the fundamental theorem

of calculus:

f̃(x) = f̃(0) +

∫ 1

0

df(tx1, ..., txn)

dt
dt = f(p) +

∫ 1

0

n∑
i=1

xi
∂f̃

∂xi
(tx1, ..., txn)dt.

Take gi(x) =

∫ 1

0

∂f̃

∂xi
(tx1, ..., txn)dt and write f̃ as

f̃(x) = f(p) +

n∑
i=1

xigi(x).

Since gi(0) = ∂f̃
∂xi

(0) = 0, we can apply the same procedure for each i, so there

are functions hij such that

gi(x) =

n∑
j=1

xjhij(x),

f̃(x) = f(p) +

n∑
i,j=0

xixjhij(x).

These functions satisfy that

hij(0) =
1

2

∂2f̃

∂xi∂xj
(0),

and

hij = hji.

Then, we apply inductively a change of coordinates following, at each step, the

next idea:

Suppose that there is a local coordinate system (U1, (u1, ..., un)) (with U1 ⊆
U) such that

f = f(p)± u2
1 ± ...± u2

r−1 +
∑
i,j≥r

uiuiHij(u),

where (Hij)i,j form a symmetric matrix and (Hij(0))i,j form a non-degenerate

matrix. Let us suppose that Hrr(0) 6= 0 (if it is not the case, we can apply a
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linear change of coordinates to ensure it). Take S(u) =
√
|Hrr(u)|, which will

be a non-vanishing positive function of u in a neighbourhood U2 ⊂ U1 of 0.

Thus, we can introduce the new local coordinates (v1, ..., vn) on U2 as

vi = ui for i 6= r,

vr(u) = S(u)

[
ur +

∑
i>r

ui
Hir(u)

Hrr(u)

]
.

Using the inverse function theorem we conclude that (v1, ..., vr) form an

invertible smooth set of coordinates in a neighbourhood of the origin, U3 ⊂ U2.

It can also be seen that

f(v) = f(p) +
∑
i≤r

(
±v2

i

)
+
∑
i,j>r

vivjGij(v),

where Gij are symmetric and form a non-degenerate matrix at v = 0.

Therefore, after applying these steps n times we can construct the coordinate

system in some neighbourhood U of p satisfying the claimed properties.

Corollary 1.5.18. The set of non-degenerate critical points of a differentiable

function is isolated.

Example 1.5.19. The height function of a Torus is a Morse function.

Theorem 1.5.20. Let X ↪! RN be a smooth manifold and f : X ! R a smooth

function. Then, for almost all a = (a1, . . . , aN ) ∈ RN , fa(x) := f(x) + 〈a, x〉 =

f(x) + a1x1 + · · ·+ aNxN is a Morse function.

This theorem comes to say that Morse functions are ”dense”. To prove it,

we start proving a lemma.

Lemma 1.5.21. Let f : U ⊂ Rk ! R be a smooth function on an open set

U . Then, for almost all k-tuples a = (a1, . . . , ak) ∈ Rk, the function fa :=

f + a1x1 + · · ·+ akxk is a Morse function on U .

Proof. Consider g : U ! Rk defined as g(x1, . . . , xk) =
(
∂f
∂x1

, . . . , ∂f∂xk

)
. Ob-

serve that (dfa)p = g(p) + (a1, . . . , ak). Then p is a critical point of f if and

only if g(p) + (a1, . . . , ak) = 0. So, if g(p) = −(a1, . . . , ak) = −a, p is a critical

point of fa.

Notice that f and fa have the same second derivatives, in both cases, the

Hessian is dgp. The critical point p is non-degenerate if dgp is non-singular.
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Now, assume−a is a regular value for g. Then, for any p such that g(p) = −a,

the differential dgp is non-singular and, hence, p, the critical point of fa is non-

degenerate.

Applying Sard’s Theorem (1.5.1) to the function g : U ! Rk, which is a

smooth map between smooth manifolds, we conclude that almost every point

in Rk is a regular value of g. In other words, for almost every a ∈ Rk, dgx :

Rk ! Rk is surjective for any x ∈ g−1(a). We conclude that for almost every

a ∈ Rk, the Hessian H(fa) = dg at every critical point of f is non-singular, so

f is a Morse function.

Now, we prove Theorem 1.5.20 on denseness of Morse functions on any

smooth manifold.

Proof of Theorem 1.5.20. We have f : X ! R a smooth function, with X ⊂ RN
and, then, k := dimX ≤ N . We want to prove that fa = f + a1x1 + · · · aNxN
is a Morse function for almost all a = (a1, . . . , aN ) ∈ RN .

Suppose x ∈ X and set x = (x1, . . . , xN ), where xi are the standard coordi-

nate functions on RN (considering ϕ−1(x) the parametrization, i.e. (ϕ1, . . . , ϕN )

the coordinate functions). Since the dimension of X is k, we know that We know

that the differential at any point x ∈ X spans a vector space of dimension k. In

other words, rank(d(x1, . . . , xN )) = k, where d(x1, . . . , xN ) is the differential of

the coordinate function. Then, there exist (xi1 , . . . , xik) : X ! Rk that define

a local diffeomorphism when restricted to X. Assume that df(x1, . . . , xk) is

non-singular and, so, (x1, . . . , xk) is a coordinate system.

ϕ−1 : Rk −! U ⊂ X
p 7−! ϕ−1(p) = (x1, . . . , xk)

We can cover X with open subsets Uα such that, on each, some k of the

coordinate functions form a coordinate system. By the second axiom of count-

ability, we can assume that there are countable many Uα.

Let X = ∪ϕα(Uα), with Uα ⊂ Rk. Take c = (ck+1, . . . , cN ) and consider the

function f(0,c) : Uα ! R defined as f(0,c) = f + ck+1xk+1 + · · ·+ cNxN︸ ︷︷ ︸
fixed

.

We apply Lemma 1.5.21 (which says the same as the theorem we are prov-

ing, but only for open sets) to f(0,c). The Lemma implies that, for almost all

b = (b1 . . . , bk) ∈ Rk, the new function f(b,c) := f(0,c) + b1x1 + · · · + bkxk is a
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Morse function on Uα.

Set Sα = {a ∈ RN | fa is not a Morse function}. We want to prove that Sα
has zero measure. Set a = (a1, . . . , aN ) := (b1, . . . , bk, ck+1, . . . , cN ) and con-

sider RN ”sliced” by the spaces {ak+1 = ck+1, . . . , aN = cN}. The idea of fixing

these N−k coordinates is that we make Sα intersect with Rk×{c} and, for any c,

each slice Sα∩(Rk×{c}) has zero measure by the Lemma 1.5.21 applied on f(0,c).

By Fubini’s theorem, since each slice has zero measure, the total measure

of Sα is zero in Rn. Since X is second countable, X = ∪Λϕα(Uα), where Λ is

countable. So S = ∪Sα is a countable union of zero measure sets and then S

has zero measure.

Now we restate the Whitney Theorem (1.1.3).

Theorem 1.5.22 (Whitney’s Embedding Theorem). For any compact smooth

manifold X of dimension k, there exists an embedding f : X ! R2k+1.

Proof. We want to prove that every k-dimensional compact manifold X ⊂ RN
admits an embedding on R2k+1. In fact, if X ⊂ RN is k-dimensional and

N > 2k + 1, we will produce a linear projections that restricts to a one-to-one

immersion on R2k+1 that restricts to a one-to-one immersion of X.

Proceeding inductively, we prove that if f : X ! RM is an injective immer-

sion with M > 2k+ 1 then there exists a unit vector such that the composition

of I with the projection map to the orthogonal complement of this vector is still

an injective immersion.

We look for a one-to-one immersion of X, which we already know that will

be proper because X is compact by hypothesis and for compact manifolds one-

to-one immersions are embeddings.

Define the following maps:

g : T (X) −! RM

(x, u) 7−! dfx(u)

h : X ×X × R −! RM

(x, y, t) 7−! t(f(x)− f(y))

Assume M > 2k+1 (if M ≤ 2k+1, we are done). By Little Sard’s Theorem

(1.5.4), there exists an a ∈ RM belonging to neither the image of g or h. Let

π be the projection of RM onto H := 〈a〉⊥. Consider π ◦ f : X ! H ' RM−1,

where f denotes the immersion. Let us check that π ◦ f is an immersion.
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• π ◦ f is injective: π(f(x)) = π(f(y))⇒ f(x)− f(y) = t · a for some scalar

t. If x 6= y, then t 6= 0, since f is injective (it is an embedding). But then,

h(x, y, 1/t) = a, but a is not in the image of h, which is a contradiction.

• d(π ◦f) is injective: dπf(x) ◦dfx = π ◦dfx. Observe that (d(π ◦f)x)(v) = 0

iff dfx(v) = t · a for some scalar t. Hence, since d is linear, dfx(v/t) = a,

contradicting the fact that a does not belong to the image of g.

1.6 Partitions of Unity

The idea of partitions of unity is to go from local aspects to global aspects on

a manifold.

Definition 1.6.1. A partition of unity in a manifold X is a set {fα : X !

R}α∈Λ such that:

1. For any x ∈ X, there exists an open neighbourhood U such that the

number of fα that satisfy fα(U) 6= 0 is finite.

2. 0 ≤ fα ≤ 1 for any α.

3. For all x ∈ X,
∑
α∈Λ fα(x) = 1.

Proposition 1.6.2. Let X be a manifold. Then, there exists a partition of

unity subordinated to any atlas {(Uα, ϕα)}α∈Λ. I.e. the support of each fα is

contained in Uα.

Proof. Without loss of generality, we can assume that ϕα(Uα) ⊂ B2(0), that

X = ∪α∈Λϕ
−1
α (B1(0)) and that the atlas is locally finite (for any x ∈ X, there

exists a finite number of charts Uα that contain x).

Take a function f ∈ C∞(Rn,R) such that:

• f(B1(0)) = 1,

• f(Rn \B2(0)) = 0,

• 0 ≤ f ≤ 1,

the so-called bump function. This function defines a partition of unity on X.

Let us see that it exists and how the partition of unity is defined.
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Take the following real function:

g(x) =

{
e−1/x2

if x > 0

0 if x ≤ 0

which is a smooth function. Define a new function

h(x) =
g(x)

g(x) + g(1− x)

that satisfies that h(x) = 1 if x ≥ 1 and h(x) = 0 if x ≤ 0. Now, take

k(x) = h(x+ 2) · h(−x+ 2) and finally consider f = k(‖x‖), which satisfies the

properties of a bump function.

Take the charts

θα =

{
f ◦ ϕα in Uα

0 else

Then, ρα = θα∑
α θα

adds up to 1 and is a partition of unity.

1.6.1 Applications of Partition of Unity

The partition of unity is used, for instance, to show that a manifold can be

equipped with a Riemannian metric.

Definition 1.6.3 (Riemannian metric). A Riemannian metric on a manifold

X is a map gp : TpX × TpX ! R such that it is:

• Bilinear,

• Symmetric,

• Positive definite.

Proposition 1.6.4. Every manifold admits a Riemannian metric.

Proof. Take an atlas {(Uα, ϕα)} of the manifold X. For every x ∈ Uα, define

g̃αx (Xx, Yx) :=

n∑
i=1

Xi
xY

i
x ,

where

Xx =

n∑
i=1

Xi
x

∂

∂xi
, Yx =

n∑
i=1

Y ix
∂

∂xi
.
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For every x ∈ X, take

ḡx(Xx, Yx) :=

{
ραg̃

α
x (Xx, Yx) in Uα

0 outside

where ρα is a partition of unity.

Finally, take

gx(Xx, Yx) :=
∑
α

ḡx(Xx, Yx),

which is indeed a Riemannian metric.

1.6.2 Morse Theory and Applications to Topology

The goal of Morse theory is to reconstruct the topology of a manifold from a

Morse function. If X is a smooth manifold and f : X ! R a Morse function, f

can give information on the topology of X. An example of usage of this idea is

the Reeb Theorem.

Theorem 1.6.5 (Reeb). If a compact manifold X of dimension n admits a

function f : X ! R which is Morse and has only two critical points, then X is

diffeomorphic to Sn (X ∼= Sn).

In this section, we denote by Xc the set of x ∈ X such that f(x) ≤ c for a

fixed Morse function f : X ! R.

Proposition 1.6.6. Consider f : X ! R. Take a, b ∈ R such that f−1([a, b]) ⊂
X is compact and does not contain any critical point. Then, Xa is a deformation

retract of Xb and, moreover, Xa
∼= Xb.

Proof. Let (X, g) be the manifold X with Riemannian metric g, that is, a

Riemannian manifold. Then, define the gradient of f as the only solution of

g(grad, v) = df(v) for every vector v. Its uniqueness is due to non-degeneracy

of g when seen as g(grad, ·) = df .

Let W ⊂ X be the set of non-critical points of f . Consider any Riemannian

metric g on X and take Y to be Y = grad f/‖ grad f‖2 ∈ X(X) in W .
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Let γ be the maximal integral curve of Y and compute d/dt(f(γ(t)).

d

dt
(f(γ(t)) = df(γ(t)) · γ′(t) =

= df(γ(t)) · Y (γ(t)) =

= g(grad f(γ(t)), Y (γ(t))) =

=
1

‖ grad f‖2
· g(grad f, grad f)

= 1

Then, f(γ(t)) = f(γ(0)) + t.

Remark 1.6.7. K := f−1([a, b]) is compact by hypothesis. Take γ(0) ∈= f−1(a).

There are two possible cases:

1. γ(t) ∈ K for any t ∈ I, t > 0. Since K is compact, the flow is defined for

all t. Then, [0,∞) ⊂ I. In particular, [0, b− a] ⊂ I.

2. The solution γ(t) goes out of K for some s > 0. Then, b < f(γ(s)) =

f(γ(0)) + s = a+ s, implying that s > b− a and that [0, b− a] ⊂ I.

In both cases, we have that [0, b− a] ⊂ I.

Now, we extend the field Y defined on W to the whole manifold X. Consider

a bump function ψ : X ! R such that ψ|K = 1 and its support is in W . The

field Ỹ defined as

Ỹ :=

{
ψ · Y in W

0 in X \W = Crit(f)

is well-defined. Let ϕt be the flow of Ỹ and consider t = b−a. The map ϕb−a is

well defined and it is a diffeomorphism that takes Xa to Xb. Now, we construct

the desired retraction r : Xb × [0, 1]! Xb in the following way:

r(x, t) :=

{
x if f(x) ≤ a
ϕt(a−f(x))(x) if a < f(x) ≤ b

The Reeb Theorem (1.6.5) is a corollary of this proposition.

Proof. Since X is compact, f(X) is compact and we can normalize it without

loss of generality and assume f(X) = [0, 1]. The two only critical points of f

have to be a maximum and a minimum, so there exist p ∈ X such that f(p) = 0
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and q ∈ X such that f(q) = 1.

By the Morse Lemma (1.5.17), in a neighbourhood of the minimum criti-

cal point p, we can write, f = x2
1 + · · · + x2

n, while in a neighbourhood of the

maximum q, we can write f = 1 − x2
1 − · · · − x2

n. So, for a small ε > 0, the

set {x ∈ X | x2
1 + · · · + x2

n < ε} is a disk Dn. Hence, there exists ε > 0

such that f−1([0, ε]) is diffeomorphic to a disk. The same reasoning at the max-

imum q leads to the conclusion that f−1([1−ε, 1]) is diffeomorphic to a disk Dn.

Because of the proposition, since there are no more critical points, the

sets Xε and X1−ε are diffeomorphic. Then, their boundaries ∂f−1([0, ε]) and

∂f−1([1− ε, 1]) are diffeomorphic via ϕ, the flow of the gradient vector field.

Finally, we want to see that we can gluing the two disks to give the sphere

Sn, and we can do it explicitly. Sn is the gluing of two n-disks via the identity

map on its boundary (which is Sn−1 = ∂Dn), i.e., Sn = Dn
1 tidDn

2 / ∼ with the

equivalence relation ∼ given by

x ∈ Dn
1 ∼ y ∈ Dn

2 ⇐⇒ y = id(x).

But X is the gluing of two n-disks glued via ϕ, not the identity, but this is

not a problem, since we can construct Sn = Dn
1 tϕDn

2 / ∼ using the equivalence

relation:

x ∈ Dn
1 ∼ y ∈ Dn

2 ⇐⇒ y = ϕ(x).

Then, construct the following diffeomorphism h between the two disks that

effectively glues them as is in the sphere case:

h : Sn = Dn
1 tϕ Dn

2 −! Dn
1 ∪id D

n
2

z 7−!

‖z‖ · ϕ
(

z
‖z‖

)
if z ∈ D1, z ∈ D2 \ {0}

0 else

Theorem 1.6.8. Let p ∈ X be a non-degenerate critical point of f : X ! R
and let k be its index. Define c := f(p). Consider ε > 0 small enough such

that f−1([c− ε, c+ ε]) is compact and does not contain any other critical points.

Then, Mc+ε = Mc−ε ∪Dk. It implies that Mc+ε is homotopically equivalent to

Mc−ε with a cell attached.
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Chapter 2

Lie Theory

This chapter follows [Bry95] and [DK00].

2.1 Lie Groups and Algebras

Definition 2.1.1 (Lie group). A Lie group G is a smooth manifold G that has

a group structure and whose maps

m : G×G −! G

(a, b) 7−! a · b

i : G −! G

a 7−! a−1

are smooth.

Some examples of Lie groups are R and C equipped with the addition opera-

tion and GL(n,R) and GL(n,C) equipped with the matrix product. A classical

set of Lie groups is the family of matrix Lie groups.

Definition 2.1.2 (Matrix Lie group). A matrix Lie group is a subgroup G

of GL(n,C) that is closed in GL(n,C), meaning that if (Am)m∈N ⊂ G with

limm!∞Am = A ∈ Mat(n× n,C), then either A ∈ G or A is not invertible.

The most studied Lie groups are, in fact, matrix Lie groups. Some examples

of matrix Lie groups are:

• SL(n,R) = {A ∈ GL(n,R) | detA = 1},

• O(n,R) = {A ∈ GL(n,R) | AtA = I},

33
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• SO(n,R) = {A ∈ GL(n,R) | AtA = I, detA = 1},

• U(n) = {A ∈ GL(n,C) | A∗A = I},

• SU(n) = {A ∈ GL(n,C) | A∗A = I, detA = 1}

• Sp(2n,R) = {A ∈ GL(2n,R) | AtJA = J}, with J a nonsingular skew-

symmetric matrix (the group of symplectic matrices).

The unit 1-sphere S1 = {z ∈ C | ‖z‖ = 1} = {eiθ | θ ∈ R} is also a

Lie group, where multiplication is given by eiθ1 · eiθ2 = ei(θ1+θ2) and inverse by

(eiθ)−1 = e−iθ. The 3-sphere also admits a Lie group structure with quaternions,

S3 = {q ∈ H | ‖q‖ = 1}, where H = {a + bi + cj + dk | a, b, c, d ∈ R, i2 =

j2 = k2 = ijk = −1}. S2 does not admit a Lie group structure, and this is

consequence of the Hairy Ball Theorem.

Theorem 2.1.3 (Hairy Ball Theorem). There does not exist a non-vanishing

continuous vector field tangent to the sphere Sn if n is odd.

Theorem 2.1.4 (Cartan’s Closed Subgroup Theorem). If H is a closed sub-

group of a Lie group G, then H is an embedded Lie subgroup.

Definition 2.1.5. If G is a Lie group, the left translation by an element g ∈ G
is defined as:

Lg : G −! G

h 7−! g · h = m(g, h)

Similarly, the right translation by g ∈ G is defined as:

Rg : G −! G

h 7−! h · g = m(h, g)

Lemma 2.1.6. Lg and Rg are diffeomorphisms.

Proof. From the definition, one can check that:

• Lg is smooth.

• Lg·g′ = Lg · Lg′ .

• (Lg)
−1 = Lg−1 .

The same for Rg.

The left and right translations induce the maps d(Lg)h : ThG ! TghG and

d(Rg)h : ThG! ThgG.
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Definition 2.1.7. A vector field X ∈ X(G) left-invariant if d(Lg)hXh = Xgh.

We denote by X(G)L(G) the set of left-invariant vector fields. In the same way

we can define right-invariant vector fields.

Definition 2.1.8. Let e ∈ G denote the identity element of the Lie group G.

We denote the tangent space of G at e, TeG, by g.

Lemma 2.1.9. There is a one-to-one correspondence between X(G)L(G) and g.

Proof. Take X ∈ g and take X̃g = d(Lg)eX ∈ TgG, where d(Lg)e : TeG = g!

TgG. Then, it is clear that X̃ ∈ X(G). Since m : G × G ! G is smooth, so is

m(g, ·) = Lg. Now

X : G −! TgG

g 7−! X̃g = d(Lg)eX

since X is a section such that π◦X = IdG,with π the projection π : TG! G.

Moreover, X̃g is a left-invariant vector field, i.e., d(Lg)hX̃h = X̃gh. We prove it:

d(Lg)hX̃h = d(Lg)hd(Lh)eXe =

= d(Lg ◦ Lh)eXe =

= d(Lgh)eXe =

= X̃gh

Finally, since Lg is a diffeomorphism, d(Lg)e is a local isomorphism, so we get

the one-to-one correspondence.

Back to S2. Suppose that S2 has a Lie group structure and find a contra-

diction. Take X ∈ TeS2, X 6= 0. Then, obtain X̃ a left-invariant vector field on

S2. Since d(Lg)e is a local diffeomorphism, X̃ is nowhere zero.

Actually, g is more than a vector space. Endowed with a Lie bracket, it is a

Lie algebra. We recall its definition.

Definition 2.1.10 (Lie Algebra). The pair (g, [·, ·]) is a Lie algebra if g is a

vector space and [·, ·] : g×g! g is bilinear, skew-symmetric and satisfies Jacobi

identity.

The definition of Lie algebra arises from the fact that each Lie group has an

associated Lie algebra.

Definition 2.1.11 (Lie Algebra of a Lie Group). Let G be a Lie group, and con-

sider g = TeG. Consider [·, ·] defined over g as [X,Y ] := [d(Lg)eX, d(Lg)eY ] =

[X̃, Ỹ ]e. (g, [·, ·]) is called the Lie algebra associated to the Lie group G.

Remark 2.1.12. dim g = dimG.
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2.1.1 Lie Algebras associated to Lie Groups

The general procedure to compute the Lie algebra (g, [·, ·]) of a Lie group G is:

1. Find e ∈ G.

2. Find g = TeG.

3. Compute X̃g = d(Lg)eX for an X ∈ g.

4. Compute [X,Y ] = [X̃, Ỹ ]e.

Example 2.1.13. The Lie group G = (Rn,+), with e = 0 and g = T0Rn = Rn.

We compute the Lie Bracket in the following way. Take X ∈ g = Rn and

compute X̃g = d(Lg)0X. To compute d(Lg)0X, we will use the fact that for

any map f , any point p and any vector v, the following equality is satisfied

dfpv =
d

dt
(f ◦ γ(t))|t=0

if γ(0) = p and γ′(0) = v.

Define γ : (−ε, ε) −! Rn such that γ(0) = e = 0 ∈ Rn and γ′(0) = X.

The natural γ that satisfies both conditions is γ(t) = 0 + tX. Now, d(Lg)0X =
d
dt (Lg ◦ γ(t))|t=0 = d

dt (g + (0 + tX))|t=0 = X|t=0 = X. Then, X̃g = X and

Ỹg = Y are both constant vector fields. Therefore, [X̃, Ỹ ]0 = [X,Y ] constant

and, hence, [X,Y ] = LXY = 0.

The Lie algebra associated to G = (Rn,+) is:

(Rn, [X,Y ] = 0).

Example 2.1.14. The Lie group G = (GL(n,R), ·), with e = In and g = TInG =

Mat(n× n,R). Take X ∈ g and compute X̃g = d(Lg)InX using the same trick

of the previous example.

Define γ : (−ε, ε) −! GL(n,R) such that γ(0) = e = In and γ′(0) = X.

The natural γ that satisfies both conditions is γ(t) = In+tX. Now, d(Lg)InX =
d
dt (Lg ◦ γ(t))|t=0 = d

dt (g · (In + tX)|t=0 = gX|t=0 = gX. Then, X̃g = gX and

Ỹg = gY , so they are non-constant vector fields.
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Now, defining γ1(t) = In + tX and γ2(t) = In + tY , we compute:

[X̃, Ỹ ]In = X̃In(Ỹ )− ỸIn(X̃) =

=
d

dt
(ỸIn ◦ γ1(t))|t=0 −

d

dt
(X̃In ◦ γ2(t))|t=0 =

=
d

dt
((In + tX)InY )|t=0 −

d

dt
((In + tY )InX)|t=0 =

= XY |t=0 − Y X)|t=0 =

= XY − Y X

which is known as the commutator of matrices.

The Lie algebra associated to G = (GL(n,R), ·) is:

(Mat(n× n,R), [X,Y ] = XY − Y X).

2.1.2 Lie Groups and Lie Algebras Homomorphisms

Definition 2.1.15. Let G,H be Lie groups. A Lie group homomorphism φ :

G! H is a morphism between groups and a smooth map between manifolds.

Remark 2.1.16. It is sufficient to ask φ to be continuous to obtain smoothness.

Definition 2.1.17. Let (g, [·, ·]g) and (h, [·, ·]h) be Lie algebras. A Lie algebra

homomorphism φ is a linear map φ : g! h such that

[φ(X), φ(Y )]h = φ([X,Y ]g)

Lemma 2.1.18. Let φ : G ! H be a Lie group homomorphism. Then, dφe :

TeGG = g! TeHH = h is a Lie algebra homomorphism.

Proof. We have to check that φ is a Lie algebra homomorphism, i.e., that it is

a linear map such that [dφe(X), dφe(Y )]h = dφe([X,Y ]g).

dφe([X,Y ]g) = dφe([d(Lg)eX, d(Lg)eY ]g) =

= [d(Lh)edφeX, d(Lh)edφeY ]h =

= [dφeX, dφeY ]h

Now, the left hand side is equal to dφe([X̃, Ỹ ]g) and the right hand side is

equal to [d̃φeX, d̃φeY ]h.
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We claim that d̃φeXh = dφeX̃g. Indeed:

dφeX̃g = dφe(d(Lg)eX) = d(φ ◦ Lg)eX = d(Lh ◦ φ)eX = d̃φeXh.

Using this claim, we get

dφe([X̃, Ỹ ]g) = [dφeX̃, dφeỸ ]h

Corollary 2.1.19. The Lie algebras of two isomorphic Lie groups are isomor-

phic.

Lemma 2.1.20. Let G be a matrix Lie group. Then, the Lie bracket of G is the

usual Lie bracket of matrices, i.e., the Lie bracket of the Lie group GL(n,C).

Proof. To prove the lemma, just consider the inclusion map i : G! GL(n,R).

The next examples show what are the Lie algebras of some classical matrix

Lie groups.

Example 2.1.21. Take O(n,R) = {A ∈ GL(n,R) | AtA = I}. Then, o(n) :=

TInO(n,R). Let X ∈ o(n), so X is the representative of the paths γ such that

γ(0) = In and γ̇(0) = X. One obvious candidate is γ(t) = In + tX. But

in order to guarantee that γ(t) ∈ O(n,R) for every t ∈ (−ε, ε) we consider

γ(t) = In + tX + O(t2). Then, the path is really on O(n,R) if and only if

γ(t)tγ(t) = In. Then, it is necessary that

(In + tX +O(t2))t · (In + tX +O(t2)) = In + t(X +Xt) +O(t2) = In.

Then, X + Xt = 0. The other terms in O(t2) do not play any role. Hence,

o(n) = {A ∈ Mat(n× n,R) | A+At = 0}.

Example 2.1.22. Take SO(n,R) = {A ∈ GL(n,R) | AtA = I, detA = 1}. Then,

by the same computations done for O(n,R), so(n) = {A ∈ Mat(n × n,R) |
A+At = 0}.

Example 2.1.23. Take SL(n,R) = {A ∈ GL(n,R) | detA = 1}. Let X ∈ sl(n),

so X is the representative of the paths γ(t) ∈ SL(n,R) such that γ(0) = In
and γ̇(0) = X. For any of such γ(t), we have that det(γ(t)) = 1. Then, if

γ(t) = (ai,j(t)), we know that: ai,j(0) = δi,j . Besides, we know that

det(γ(t)) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σi(t)

)
= 1.
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Hence, deriving with respect to t, we obtain that

∑
σ∈Sn

(
sgn(σ)

(
n∏
i=1

ai,σi(t)

)(
n∑
i=1

a′i,σi(t)

ai,σi(t)

))
= 0.

Evaluating the latter expression at t = 0, we deduce that:

n∑
i=1

a′i,i(0) = 0.

Then, sl(n) = {A ∈ Mat(n× n,R) | trA = 0}.

Definition 2.1.24. A smooth manifoldM is parallelizable if there existX1, . . . , Xn ∈
X(M) such that, for every p ∈ M the set {(X1)p, . . . , (Xn)p} forms a basis of

TpM .

Lemma 2.1.25. Every Lie group G is parallelizable

Proof. If G is a Lie group, then any basis of g = TeG is a smooth global frame

for G.

Remark 2.1.26. A non-orientable manifold does not admit a Lie group structure.

Lemma 2.1.27. Let f : M ! N be a diffeomorphism and X,Y ∈ X(M). Then,

df([X,Y ]M ) = [df(X), df(Y )]N .

Proof. Take any g ∈ C∞(N) and compute df([X,Y ]M )(g).

df([X,Y ]M )f(p)(g) = [X,Y ]p(g ◦ f) =

= Xp(Y (g ◦ f))− Yp(X(g ◦ f)) =

= Xp(df(Y (g) ◦ f))− Yp(df(X(g) ◦ f)) =

= (df(X)f(p))(df(Y ))(g)− (df(Y )f(p))(df(X))(g) =

= [df(X), df(Y )]N (g)

2.1.3 The exponential map

Theorem 2.1.28. Let M be a manifold and X ∈ X(M). For every p ∈M , there

exists Ip, a neighbourhood of 0 in R, such that there is a solution γ : Ip ! M

with γ(0) = p and γ̇(t) = X(γ(t)).
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Proof. We prove unicity. Assume that there exist two solutions (γ1, I1) and

(γ2, I2) of {
γ̇(t) = X(γ(t))

γ(0) = p
(2.1.1)

Then, for any t ∈ I1 ∩ I2, γ1(t) = γ2(t), so there exists a maximal extension to

a given solution.

Lemma 2.1.29. Let G be a Lie group. Then, left-invariant vector fields are

complete.

Proof. Let us take a maximal solution γ : I ! G such that it is solution to:{
γ̇(t) = X(γ(t))

γ(0) = e ∈ G
(2.1.2)

where X ∈ X(G)L(G) (meaning that X is a left-invariant vector field). We claim

that (Lg ◦ γ) : I ! G is a solution to:{
d
dt (Lg ◦ γ)(t) = X(gγ(t))

(Lg ◦ γ)(0) = g
(2.1.3)

Indeed, d
dt (Lg ◦ γ)(t) = d(Lg)γ(t)(γ

′(t)) = d(Lg)γ(t)X(γ(t)) = X(Lg ◦ γ(t)) =

X(gγ(t)).

Assume I = (−a, b) and consider g = γ(b−ε). Then, we have just proved that

γ and γ̃ are two integral curves of X and γ̃ extends γ, which is a contradiction

with the fact that the interval I = (−a, b) was maximal. Then, I is unbounded.

Definition 2.1.30. A 1-parameter subgroup of a Lie group G is a smooth R-

homomorphism φ : (R,+)! (G, ·).

Proposition 2.1.31. There is a one-to-one correspondence between left-invariant

vector fields and 1-parameter subgroups.

Proof. Let φ be a 1-parameter subgroup. Take Xe = dφ0( ∂∂t ) and left-multiply.

On the other hand, let X be a left-invariant vector field and take the integral

curve γ : (R,+) ! (G, ·) such that γ(0) = e ∈ G. It is complete by Lemma

2.1.29. It just lasts to prove that γ(t+ s) = γ(t)γ(s).
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Let us denote γ1(t) = γ(s) · γ(t) and γ2(t) = γ(s + t). It is easy to check

that both γ1(t) and γ2(t) are integral curves of X:

d

dt
γ1(t) =

d

dt
(Lγ(s) ◦ γ(t)) =

= d(Lγ(s))γ(t)(γ̇(t)) =

= d(Lγ(s))γ(t)(X(γ(t))) =

= X(γ(s)γ(t)) =

= X(γ1(t))

and similarly for γ2(t). In both cases, the initial condition is the same, because

γ1(0) = γ(s) = γ2(0), so we end the proof.

Definition 2.1.32. Let G be a Lie group and g be a Lie algebra. The expo-

nential map is defined by:

exp : g −! G

X 7−! γX̃(1)

where where γX̃ : R! G is the unique one-parameter subgroup of G whose

tangent vector at the identity is equal to X.

Proposition 2.1.33. Suppose exp is the exponential map of the Lie group G.

Then:

1. exp is smooth.

2. exp(tX) = γX̃)(t).

3. exp((s+ t)X) = exp(sX) · exp(sT ).

4. d(exp)0 : T0g = g! T0g = g is the identity.

5. exp is a local diffeomorphism.

6. If f : G ! H is a Lie group homomorphism, and F := dfe, the following

diagram commutes:

g h

G H

F

expG expH

f
(2.1.4)
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Proof. 1. The existence theorem of ODE’s implies smoothness with respect

to initial condition, but not necessarily with respect to X. To solve this,

define a vector fiels Y ∈ X(g×G) as

Y(x,g) = 0x + X̃g.

Now, the flow of Y is

ψYt (z, h) = (z,R
γX̃e (t)

(h)).

Since Y(x,g) is smooth, R
γX̃e (t)

(h)) is smooth too and so is ψYt (z, h). Hence,

as h · γX̃e (t) = R
γX̃e (t)

(h)) is smooth. If we evaluate the expression at

h = e, t = 1 we obtain that γX̃e (1) = exp(X) is smooth.

2. Consider η(s) := γX(s · t). Then, η′(s) = t ·X(γX(s · t)) = X(η(s)). Then,

η is an integral curve of the field tX. Thus, by definition of exp, we see

that exp(tX) = η(1) = γX(t).

3. exp((s+ t)X) = γX(s+ t) = γX(s) · γX(t) = exp(sX) · exp(tX).

4. In order to check it, let us compute d exp0(X). We take σ : (−ε, ε) ! g

such that σ(0) = 0 and σ′(0) = X. For instance, we take σ(t) = tX. We

compute:

d exp0(X) =
d

dt
(exp(tX))|t=0 =

d

dt
γX(t)|t=0 = X

5. Apply the Inverse Function Theorem to check that exp is a local diffeo-

morphism.

6. Let X ∈ g. Define σ(t) = f(expG(tX)). We need to prove that σ(t) is

the integral curve of the left-invariant vector field F̃ (X) ∈ XL(H). By

definition, expH(tF (X)) = γF̃ (X)(t). It is clear that σ(0) = eH and,

on the other hand, d
dtσ(t)|t=0 = dfeGX = FX. This proves that σ is a

1-parameter subgroup, so f(expG(X)) = expH(F (X)).

Example 2.1.34. Take G = (R,+) and g = (Rn, [·, ·] = 0). Then, for any

X ∈ g = Rn, X̃g = X. And we have that exp(X) = X.

Example 2.1.35. Take G = (GL(n,R), ·) and g = gl(n,R). Then, for any X ∈ g,

X̃g = g ·X. And we have that exp(X) = γX̃(1). Since γX̃(t) satisfies dγX̃(t)
dt =

X̃(γX̃(t)) = γX̃(t) ·X, we have that γX̃(t) = etX . Then, exp(X) = eX =
∑

Xk

k! .



2.1. LIE GROUPS AND ALGEBRAS 43

Definition 2.1.36. Let G be a matrix Lie group. Then, the associated Lie

algebra is defined to be

g = {X ∈ Mat(n× n,C) | etX ∈ G ∀t ∈ R}.

Baker–Campbell–Hausdorff formula

Consider a Lie group G and its Lie algebra g. Take a small neighbourhood V ′

around 0 ∈ g such that exp |V ′ : V ′ ⊂ g ! U ′ ⊂ G is a diffeomorphism. Take

a smaller neighbourhood U such that U · U ∈ U ′ and U−1 ∈ U ′ and denote

V = exp−1(U) (then, exp−1 |V : V ! U is still a diffeomorphism). In this

construction, it is clear that, for every X,Y ∈ V, exp(X) · exp(Y ) = exp(Z) for

some Z ∈ V .

Theorem 2.1.37. There exists Z = µ(X,Y ) such that exp(X) · exp(Y ) =

exp(Z) holds. µ : V × V ! V can be written only in therms of Lie algebra

operations, i.e., X,Y, [X,Y ], [X, [X,Y ]], . . .

Let us compute µ for GL(n,C). We already know that forA ∈ gl(n,C), exp(A) =

eA =
∑

Ak

k! . We use its expansion at 0 to obtain:

etA · etB = (I + tA+
1

2
t2A2 + · · · )((I + sB +

1

2
s2B2 + · · · ) = (2.1.5)

= I + tA+ sB +
1

2
t2A2 +

1

2
s2B2 + tsAB + · · · (2.1.6)

When t and s are small, this equals

eµ(tA,sB) = I + µ(tA, sB) +
1

2
µ2(tA, sB) + · · ·

Comparing both expressions, we see that up to first order, µ(tA, sB) =

tA+ sB. But with this definition of µ, the second order is not correct, because:

I +µ(tA, sB) +
1

2
µ2(tA, sB) = I + tA+ sB+

1

2
t2A2 +

1

2
ts(AB+BA) +

1

2
s2B2

Then, we modify the expression of µ(tA, sB) to

µ(tA, sB) = tA+ sB +
1

2
tsAB − 1

2
tsBA = tA+ sB +

1

2
ts[A,B]

And, following the same procedure, we can obtain an expression for µ(tA, sB).
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Proposition 2.1.38. Let G be a Lie group and g its Lie algebra. Then,

exp(tX) · exp(tY ) = exp(t(X + Y ) + t2

2 [X,Y ] + o(t3)) for t sufficiently small.1

To prove the proposition we need the following lemma.

Lemma 2.1.39. Let G be a Lie group and f : G ! R a differentiable map.

Then:
d

dt
f(g exp(tX)) = X̃f(g exp(tX))

Proof. d
dtf(g exp(tX)) = d

dtf(Rexp(tX)(g)) = d
dtf(ψX̃t (g)) = X̃f(g exp(tX))

Proof of the Proposition. Apply the lemma at g = e and t = 0 to obtain

d

dt
f(exp(tX))|t=0 = X̃f(e)

and
d2

dt2
f(exp(tX))|t=0 = X̃2f(e)

Then:

f(exp(tX)) = f(e) + tXf(e) +
1

2
t2X2f(e) + o(t3) (2.1.7)

Now, consider

u : R2 −! R
(s, t) 7−! f(exp(tX) · exp(sY ))

And do the Taylor expansion of u(t, t) around t = 0:

u(t, t) = u(0, 0) + t

(
∂u

∂s
(s, t)|(0,0) +

∂u

∂t
(s, t)|(0,0)

)
+ (2.1.8)

+
1

2
t2
(
∂2u

∂s2
(s, t)|(0,0) + 2

∂2u

∂s∂t
(s, t)|(0,0) +

∂2u

∂t2
(s, t)|(0,0)

)
+ o(t3) =

(2.1.9)

= f(e) + t (Xf(e) + Y f(e)) +
t2

2

(
X2f(e) + Y 2f(e) + 2XY f(e)

)
(2.1.10)

1The terms up to order 5 of the B-C-H formula are:

µ(X,Y ) = X + Y + 1
2
[X,Y ] + 1

12
([X, [X,Y ]] + [Y, [Y,X]]) − 1

24
[Y, [X, [X,Y ]]] −

1
720

([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X,Y ]]]])+ 1
360

([X, [Y, [Y, [Y,X]]]] + [Y, [X, [X, [X,Y ]]]])+
1

120
([Y, [X, [Y, [X,Y ]]]] + [X, [Y, [X, [Y,X]]]]) + · · · .
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Since exp is a local diffeomorphism for small t, exp(tX) exp(tY ) = exp(γ(t)),

where γ : (−ε, ε)! U ⊂ g with γ(0) = 0. Let us chose a general γ(t) satisfying

it:

γ(t) = At+
t2

2
B + o(t3) A,B ∈ g

Then:

f(exp(γ(t))) = f(exp(tA+
t2

2
B + o(t3))) = (2.1.11)

= f(e) + t(Xf(e) + Y f(e)) +
t2

2
(X2f + Y 2f + 2XY f) + o(t3)

(2.1.12)

On the other hand:

f(exp(γ(t))) = f(exp(tA+
t2

2
B + o(t3))) = (2.1.13)

= f(e) + tÃf(e) +
t2

2
B̃f(e) +

t2

2
Ã2f(e) + o(t3) (2.1.14)

Equaling the terms at first order, we obtain

Xf(e) + Y f(e) = Ãf(e) =⇒ Ã = X + Y

Equaling the terms at second order, we obtain

1

2

(
X2f(e) + Y 2f(e) + 2XY f(e)

)
=

1

2

(
B̃f(e) + Ã2f(e)

)
=⇒ B̃ = [X,Y ]

Remark 2.1.40. If G ∼= H, then g ∼= h. However, g ∼= h does not imply that

G ∼= H. But from B-C-H we see that locally around 0 it is true.

Proposition 2.1.41. Let G be a Lie group and α : R ! G a continuous

homomorphism. Then, α is smooth.

Proof. We just need to prove that α is smooth around 0. Take a small neigh-

bourhood Br(0) ⊂ g such that exp : B2r(0)! exp(B2r(0)) ⊂ G is a diffeomor-

phism. Consider β := exp−1 ◦α : (−ε, ε) ! Br(0), where ε > 0 is such that

α((−ε, ε)) ⊂ exp(Br(0)). This ε exists because α is continuous.

Now, take t such that |t| < 2ε. Then:

exp(β(2t)) = α(2t) = α(t+ t) = α(t) ·α(t) = exp(β(t)) · exp(β(t)) = exp(2β(t)),

implying that β(2t) = 2β(t). Then, 1
2β(t) = β( t2 ) and, by induction, 1

2n β(t) =

β( t
2n ) for any n ∈ N.
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Now:

α
(mε

2n

)
=
(
α
( ε

2n

))m
=
(

exp
(
β
( ε

2n

)))m
= exp

(
mβ

( ε
2n

))
= exp

(m
2n
β (ε)

)
.

Take the set A = {m2n | m,n ∈ N}, which is dense in R. Since α
(
mε
2n

)
=

exp
(
m
2n β (ε)

)
, we can take the t ∈ R such that |t| < 2ε and construct a succession

{mε2n }! t. By continuity of α, α
(
mε
2n

)
= exp

(
t
εβ (ε)

)
, so α is smooth.

Proposition 2.1.42. Let f : G ! H be a continuous homomorphism between

Lie groups. Then, f is smooth.

Proof. Assume G has dimension n and take a basis {X1, . . . , Xn} of g. Consider

the map

φ : Rn −! G

(t1, . . . , tn) 7−! exp(t1X1) · · · exp(tnXn)

whose differential at zero is:

dφ0 : Rn −! g

(a1, . . . , an) 7−! a1X1 + · · ·+ anXn

Hence, φ it is a diffeomorphism around 0.

Now, consider f ◦ φ:

f ◦ φ : Rn −! H

(t1, . . . , tn) 7−! f(exp(t1X1) · · · exp(tnXn))

Since f is a diffeomorphism, (f◦φ)(t1, . . . , tn) = f(exp(t1X1))·· · ··f(exp(tnXn)).

By Proposition 2.1.41, f(exp(tiXi)) is smooth for any i, so f ◦ φ is C∞.

Finally, f = (f ◦ φ) ◦ φ−1, so f is smooth.

2.1.4 Lie subgroups

A Lie subgroup of a Lie group G is a subgroup of G endowed with a topology

and a group structure making it a Lie group and an immersed submanifold.

Definition 2.1.43.

Proposition 2.1.44. Let G be a Lie group and H a subgroup of G that is also

an embedded submanifold. Then, H is a Lie subgroup of G.
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Proof. To prove the proposition, we want to equip G with a Lie group struc-

ture. We know that the group operation m : G × G −! G is C∞. Then,

the restriction m|H : H × H −! H ⊂ G is also smooth. Since H is embed-

ded, m : H × H −! H ⊂ G is C∞. To conclude that H is a Lie group, we

still have to check that H is closed. Take a sequence {hi}i∈I ⊂ H such that

limi!∞ hi = g ∈ G. Since H is embedded, take a slice chart U which contains

e and a smaller neighbourhood W ⊂ U of e such that W ⊂ U and such that

µ : (g1, g2) 7! g−1
1 ·g2 : G×G! G. By continuity, there exists a neighbourhood

V of e such that such that µ : V × V −! W , so if limi!∞ g · hi = e, then

{g · hi}i∈I ⊂ V because h−1
i · hj = (g−1hi)

−1︸ ︷︷ ︸
∈V

· (g−1hj)︸ ︷︷ ︸
∈V

∈W .

Now, fix i and then limj!∞ h−1
i · hj = h−1

i · g ∈ U (because W ⊂ U). Since

U ∩ H is a slice, it is closed. Therefore, h−1
i · g ∈ U ⊂ H =⇒ g ∈ H =⇒

H is closed.

Theorem 2.1.45 (Closed Subgroup Theorem). Let G be a Lie group. Take

H ⊂ G a closed subgroup. Then, H is an embedded Lie group.

Proof. We need to show that H is embedded. For this, we construct slice charts.

The obvious candidate to be the Lie algebra associated to H is h = {X ∈ g |
exp (tX) ∈ H ∀t ∈ R} ⊂ g.

h is a vector space because:

1. X ∈ h⇒ tX ∈ h∀t ∈ R, it is clear from the definition

2. X,Y ∈ h ⇒ X + Y ∈ h, because for any X,Y ∈ h, exp t(X + Y ) =

exp(tX+tY ). For n big, exp(
t

n
X)︸ ︷︷ ︸

∈H

· exp(
t

n
Y )︸ ︷︷ ︸

∈H

= exp(
t

n
(X + Y ) +O(

t2

n2
))︸ ︷︷ ︸

∈H

.

Then, exp( tn (X + Y ) +O( t
2

n2 ))n = exp(t(X + Y ) +O( t
2

n )) ∈ H. so taking

n −!∞ we obtain that exp(t(X + Y )) ∈ H because H is closed.

To show that H is embedded, we want to find neighbourhoods U ⊂ G of e

and V ⊂ h of 0 such that exp |V is a diffeomorphism and expV = U ∩H. Let

us fix an inner product on g. We have g = h⊕ h⊥, so we can define

ψ : h⊕ h⊥ −! G

(X,Y ) 7−! exp(X) · exp(Y )

which is a diffeomorphism around 0. This gives us neighbourhoods V ⊂ h

of 0, V ′ ⊂ h of 0 and U ⊂ G of e such that ∀g ∈ U ∃X ∈ V and Y ∈
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V ′ such that g = ψ(X,Y ) = expX · expY . We want to check that g ∈ U ∩H
and that Y = 0.

We first see claim there exists an ε > 0 such that ∀Y ∈ h⊥, 0 < ‖Y ‖ ≤ ε =⇒
expY /∈ H.

Indeed, assume that there exists a succession {Yi}i∈I ⊂ h⊥ such that limi!∞ ‖Yi‖ =

0 and exp(Yi) ∈ H and we will arrive to a contradiction.

For every i ∈ I, define Zi := Yi
‖Yi‖ , so ‖Zi‖ = 1. The set {Zi}i∈I belongs

to the unit sphere, a compact, so limi!∞ Zi = Z with ‖Z‖ = 1. Consider

t ∈ R+, take t · Zi = t
‖Yi‖ · Yi = (ki + εi)Yi, where ki ∈ N and εi ∈ [0, 1).

Since limi!∞ tZi = tZ, and limi!∞ εiYi = 0 because limi!∞ ‖Yi‖ = 0 and εi
is bounded, we have that limi!∞ kiYi = tZ.

By continuity of exp, we have that limi!∞

∈H︷ ︸︸ ︷
exp(Yi)

ki = limi!∞ exp(kiYi) =

exp(tZ), and then exp(tZ) ∈ H because H is closed, and hence, Z ∈ h. But

Z ∈ h⊥, which implies that Z ∈ h ∩ h⊥ = {0}, which is a contradiction with

‖Z‖ = 1.

Now, in the expression ψ : V × V ′ ⊂ h ⊕ h⊥ −! U ⊂ G, take V ′ ∩ {Y ∈
h⊥ | ‖Y ‖ < ε for ε as in the claim}. This means that for g ∈ U ∩ H, g =

expX · expY =⇒ Y = 0, which implies that g ∈ exp(V ). This proves that

U ∩H = expV .

Remark 2.1.46. A consequence of the Closed Subgroup Theorem is that matrix

Lie groups are embedded Lie subgroups of GL(n,C).

Proposition 2.1.47. Let G be a Lie group and g its Lie algebra. Take H a Lie

subgroup of G. Then, the Lie algebra h of H is a subalgebra of g.

Proof. Take the inclusion map i : H −! G, which is a Lie group morphism.

The differential die : h −! h is a Lie algebra homomorphism.

Theorem 2.1.48. Let G be a Lie group and g its Lie algebra. Let h be a Lie

subalgebra of g. Then, there exists a unique connected Lie subgroup H of G such

that its Lie algebra is h.

Proof. The idea is to consider a distributionD = 〈X̃1, . . . , X̃k〉, where {X1, . . . , Xk}
is a basis of h and X̃i are the corresponding left-invariant vector fields. Inte-

grating the distribution will give the manifold (the Lie group).
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2.1.5 Integration of differential distributions

Lemma 2.1.49. Let X,Y ∈ X(M). Then, [X,Y ] = 0 ⇐⇒ XY − Y X =

0 ⇐⇒ φXs ◦ φYt = φYt ◦ φXs , where φZr is the flow of the vector field Z at time

r.

Proposition 2.1.50. Let X,Y be two vector fields on a manifold M such that

[X,Y ] = 0. Then, there exists a smooth map F : (−ε, ε) × (−ε, ε) −! M such

that:

1. F (0, 0) = p

2. dF(s,t)

∣∣
p

(
∂
∂s

)
= X(F (s, t))

∣∣
p

3. dF(s,t)

∣∣
p

(
∂
∂t

)
= Y (F (s, t))

∣∣
p

Proof. Take F = φXs ◦ φYt (p), which satisfies φXs ◦ φYt = φYt ◦ φXs by previous

Lemma 2.1.49 and, then:

1. F (0, 0) = p

2. dF(s,t)

∣∣
p

(
∂
∂s

)
= d

ds

(
φXs
) (
φXs ◦ φYt

)
(p) = X(F (s, t))

3. dF(s,t)

∣∣
p

(
∂
∂t

)
= d

dt

(
φYt
) (
φYt ◦ φXs

)
(p) = Y (F (s, t))

Definition 2.1.51. The map F = φXs ◦ φYt is called integral surface.

Definition 2.1.52. A differential distribution D of rank k is the object that

satisfies the following properties:

• For every p ∈M , Dp ≤ TpM , i.e. Dp is a subspace of dimension k.

• For every p ∈M , there exists a neighbourhood U ⊂M of p andX1, . . . , Xk ∈
X(U) such that if q ∈ U , then 〈X1(q), · · · , Xl(q)〉 = Dq.

Example 2.1.53. In M = Rn, D = 〈 ∂
∂x1

, . . . , ∂
∂xk
〉 with k ≤ n is a distribution

of rank k and, in fact, is Rk at every point.

Example 2.1.54. In M = R3, D = 〈 ∂∂x ,
∂
∂y + x ∂

∂z 〉 is a distribution of rank 2

and, in fact, it is a plane at every point.

Remark 2.1.55. A distribution of rank 1 is a vector field.

Definition 2.1.56. Let D be a differential distribution of rank k on a manifold

M . Then, D is integrable if there exists a k-dimensional embedded submanifold

S ⊂M such that for all p ∈ S, TpS = Dp.
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In Example 2.1.53, the distribution is integrable, while in Example 2.1.54,

it is not integrable.

Definition 2.1.57. A distribution D on a manifold M is involutive if ∀X,Y
vector fields locally defined on an open neighbourhood U , and for every p ∈ U ,

[X,Y ]p ∈ Dp.

Theorem 2.1.58 (Frobenius Theorem). A distribution D is integrable if and

only if it is involutive.

Proof. From left to right: Let S be an integrable submanifold. Suppose X,Y

are two vector fields locally defining the distribution. Then, X,Y ∈ X(S) (lo-

cally). Therefore, [X,Y ] ∈ D (locally), so D is involutive.

From right to left: It is clear that we can integrate the distribution if the vec-

tor fields X1, . . . , Xk locally defining D satisfy [Xi, Xj ] = 0 for all i, j. Indeed,

we can integrate them to F : (t1, . . . , tk) 7−! φX1
t1 ◦ · · · ◦ φ

Xk
tk

: (−ε, ε)k −! M .

Since [Xi, Xj ] = 0, by Lemma 2.1.49 we know that φXiti ◦ φ
Xj
tj commute. So, we

want to find some Y1, . . . , Yk locally defining D and such that [Yi, Yj ] = 0 for all

i, j.

Let p ∈ M and U ⊂ M a neighbourhood of p. Take X1, · · · , Xk defining

D. At p, Xi(p) = ∂
∂xi

for all = 1, . . . , k. In U , consider B = 〈 ∂
∂x1

, . . . , ∂
∂xn
〉.

We have that Dq t Bq (they are transversal) for any q ∈ U (maybe shrinking

U) because transversality is an open condition. Now, we will prove that we can

find an Y1, . . . , Yk such that Yi = ∂
∂xi

+
∑n
l≥k+1 ail

∂
∂xl

and [Yi, Yj ] = 0.

Write, for all i = 1, . . . , k, Xi as Xi

∑n
l=1 cil

∂
∂xl

(we can always write it this

way). The matrix (cil) is invertible in U . Take Yi =
∑n
l=1 dli

∂
∂xl

+ ∂
∂xi

, where

(dil) is the inverse of (cil). Let us check now that [Yi, Yj ] = 0.

[Yi, Yj ] =[

n∑
l=1

dli
∂

∂xl
+

∂

∂xi
,

n∑
s=1

dsj
∂

∂xs
+

∂

∂xj
] = (2.1.15)

= [
∂

∂xi
,
∂

∂xj
]︸ ︷︷ ︸

=0

+ [

n∑
l=1

dli
∂

∂xl
,
∂

∂xj
]︸ ︷︷ ︸

∈B

+ (2.1.16)

+ [
∂

∂xi
,

n∑
s=1

dsj
∂

∂xs
]︸ ︷︷ ︸

∈B

+ [

n∑
l=1

dli
∂

∂xl
,

n∑
s=1

dsj
∂

∂xs
]︸ ︷︷ ︸

∈B

(2.1.17)
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Then, [Yi, Yj ] ∈ B ∩D, which implies that [Yi, Yj ] = 0.

Definition 2.1.59. A leaf of an integrable distribution is a maximal integrable

submanifold.

Remark 2.1.60. In the definition of a leaf Λ of an integrable distribution, maxi-

mal means that, if there exists an integrable submanifold S such that Λ∩S 6= 0,

then S ⊂ Λ.

Remark 2.1.61. The leaf Λp at a point p in a manifold with an integrable dis-

tribution can be defined as

Λp = {q ∈M | you can reach q from p following paths in the integrable submanifold}.

Proof of Theorem 2.1.48. Suppose G is a Lie group with Lie algebra g and h ≤
g. Take D = {X̃1, . . . , X̃k | X1, . . . , Xk ∈ h}. Then, D is involutive because

h is a subalgebra. Therefore, we can integrate. Take H = Λe (the leaf of the

identity element) and check that H is indeed a Lie group. Let h1, h2 ∈ H = Λe.

Then, h1 · h2 = Lh1(h2) ∈ Lh1(Λe) = Λh1 = Λe = H. And h−1 = h−1
1 · e ∈

Lh−1
1

(Λe) = Λh1
= Λe = H.
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Chapter 3

Lie Group Actions

This chapter follows [Aud91] and [Bry95].

3.1 Definition of Lie Group Action

Definition 3.1.1. Let M be a smooth manifold and G a Lie group. A Lie

group action is a smooth mapping α : G×M −!M such that:

1. The induced mapping αg : m 7−! α(g,m) : M −!M is a diffeomorphism

for every g ∈ G.

2. For every g1, g2 ∈ G,m ∈M , α(g1 · g2,m) = α(g1, α(g2,m)).

Example 3.1.2. Let G be a Lie group. G acts on itself by left-translations:

α : G×G −! G

(g1, g2) 7−! Lg1
(g2) = g1 · g2

Indeed, αg = Lg is a diffeomorphism, with inverse Lg−1 , and satisfies Lg·h(k) =

(g · h) · k = g · (h · k) = Lg(h · k) for any g, h, k ∈ G.

Example 3.1.3. Let G be a Lie group. Right multiplication by an element of G

(Rg : h 7−! hġ) is an action.

Example 3.1.4. From the combination of the previous two examples and the

fact that the inverse of g ∈ G is in G, we have that conjugation (Lg ◦ Lg−1) is

an action.

Example 3.1.5. Suppose M is a compact manifold and X ∈ X(M) (or, simply,

suppose X is complete and, hence, its flow is defined for all t). The flow of X
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defines an R-action:
α : R×M −! M

(t, p) 7−! ϕXt (p)

Where ϕXt is the flow of X, i.e., the solution of dϕt
dt = X(ϕt). Indeed, ϕXt is

a diffeomorphism and ϕXs+t(p) = ϕXs ◦ ϕXt (p).

Example 3.1.6. Take G = GL(n,R) and M = Rn. Then, GL(n,R) acts on Rn

by the usual matrix multiplication:

α : GL(n,R)× Rn −! Rn

(A, x) 7−! A · x

It is a group action because α(A,α(B, x)) = A(Bx) = (AB)x = α(AB, x)

and α−1
A = αA−1 .

Example 3.1.7. Take G = O(n,R) and M = Sn−1 = {x ∈ Rn | ‖x‖ = 1} ⊂ Rn.

Then, O(n,R) acts on Sn−1 by the usual matrix multiplication.

α : O(n,R)× Sn−1 −! Sn−1

(A, ~u) 7−! A · ~u

It is a Lie group action because, as in the previous example, matrix multi-

plication satisfies the action conditions.

Exercise 3.1.8. Take G = S1 and M = S2. Prove that S1 acts on S2 (by

rotations).

Exercise 3.1.9. Take G = S1 = {t ∈ C | ‖t‖ = 1} and M = S3 = {(z1, z2) ∈
C2 | ‖z1‖2 + ‖z2‖2 = 1} ⊂ R4. Prove that α : (t, (z1, z2)) 7−! (tm1z1, t

m2z2)

defines an action for any m1,m2 ∈ Z.

Exercise 3.1.10. Take G = S1 ∼= SO(2,R) and M = RP1. Prove that the

following mapping is an action:(
a b

c d

)[
x

y

]
=

[
ax+ by

cx+ dy

]

The affine form of this map,

(
a b

c d

)
,

(
x

y

)
7−! ax+by

cx+dy , is known as the Möbius

transformation.

Definition 3.1.11. Let α : G × M ! M be a Lie group action. For each

m ∈M , the orbit of m is the set

O(m) = G ·m = {g ·m | g ∈ G} ⊂M
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Definition 3.1.12. An action α : G ×M ! M is transitive if there is only

one orbit in the manifold. In other words, if ∀x, y ∈ M , ∃g ∈ G such that

y = α(g, x) = g · x.

Definition 3.1.13. Let ρ : G × M ! M be a Lie group action. For each

m ∈ M , the stabilizer or isotropy group at m is the set of elements of G that

fix m, i.e.:

Gm = {g ∈ G | g ·m = m} ⊂ G

Lemma 3.1.14. For every m ∈ M , the stabilizer Gm is a subgroup of G (in

fact, a closed subgroup).

Proof. Let us see first that Gm is a subgroup of G. Take m ∈M .

1. For g1, g1 ∈ Gm, (g1 · g2) ·m = g1 · (g2 ·m) = g1 ·m = m =⇒ g1 · g2 ∈ Gm.

2. e ·m = m =⇒ e ∈ Gm.

3. For g ∈ Gm, g−1 ·m = g−1 · (g ·m) = (g−1 · g) ·m) = m =⇒ g−1 ∈ Gm.

Consider now the continuous map αm : G −!M defined by αm(g) := α(g,m).

Then, αm−1(g) = Gm =⇒ Gp is closed.

Proposition 3.1.15. The isotropy groups of points on the same orbit are con-

jugated. In other words, if x, y ∈M , g ∈ G and y = g · x, then Gy = gGxg
−1.

Definition 3.1.16. IfGm = {e}∀m ∈M , i.e., all the isotropy groups are trivial,

the action is called free. It is called locally free if all the Gm’s are discrete.

Definition 3.1.17. An action is effective if
⋂
m∈M Gm = {e}.

The manifold M can be partitioned in orbits because, for every m ∈M , the

evaluation map evm : g 7! g ·m induces a bijection between the quotient G/Gm
and the orbit G · m. The quotient set M/G is precisely the set of orbits in

which M decomposes. We state some topological results that will be necessary

to prove that the quotient is a manifold.

Lemma 3.1.18. Suppose M is a locally compact Hausdorff space, equipped

with a continuous right action of a topological group H. Then the following

statements are equivalent:

• The orbit space M�H is Hausdorff.

• For any compact subset C ⊂M , the set CH is closed.
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Proof. Suppose that the orbit space M�H is Hausdorff. Take C ⊂M compact.

Then, the class of C in M�H, i.e. π(C) is compact. Since M�H is Hausdorff

π(C) is closed. As CH = π−1π(C), CH is closed.

Now, suppose that for any compact subset C ⊂ M , the set CH is closed.

Since {m} is compact, the orbit mH is closed. Assume x1, x2 ∈ X = M�H are

distinct points. Choose mj ∈ π−1(xj). Then, xj = mjH, with m1H∩m2H = ∅.
The complementary set V of m2H in M is open, right H-invariant and contains

m1H. Choose an open neighborhood U1 of m1 in M such that U1 is compact

and contained in V . Then, the set U1H is closed and still contained in V . Its

complementary set V2 is open and contains m2H. Then, π(V2) is open in X

and contains x2.

On the other hand, V1 = U1H is the union of the open sets U1h, so it is

open in M . V1 contains m1. so that π(V1) is an open neighborhood of x1 in

X. The sets V1 and V2 are right H-invariant and disjoint. It follows that the

sets V1 and V2 are disjoint open subsets of X containing the points x1 and x2,

respectively, implying that the orbit space M�H is Hausdorff.

Definition 3.1.19. Assume that M is a smooth manifold and that a Lie group

H is right-acting on the manifold M ×H, with an action given by (x, g) · h =

(x, gh). We will say that such an action is of trivial principal fiber bundle type.

We call that it is of principal fiber bundle (PFB) if the following two conditions

are fulfilled:

• Every point m of M has an open H-invariant neighborhood U such that

the right H-action on U is of trivial PFB type.

• Whenever C is a compact subset of M , then CH is closed.

Remark 3.1.20. Lemma 3.1.18 shows that the second condition in the definition

is equivalent to saying that the quotient space M�H is Hausdorff.

We want now to prove a theorem that shows that, under certain conditions

(certain smooth actions), the quotient space admits a unique natural structure

of smooth manifold. It will be necessary to prove 3.1.24 afterwards.

Theorem 3.1.21. Let H be a right action on M be of Principal Fiber Bun-

dle type. Then M�H carries a unique structure of C∞-manifold (compatible

with the topology) such that the canonical projection π : M −! M�H is a

smooth submersion. If m ∈M , the tangent map Tmπ : TmM −! Tπ(m)(
M�H)

has kernel Tm(mH), the tangent space of the orbit mH at m. Accordingly,
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it induces a linear isomorphism from TmM�Tm(mH) onto Tπ(m)(
M�H). Fi-

nally, π∗ : f 7−! f ◦ π restricts to a bijective linear map from C∞(M�H) onto

C∞(M)H .

Remark 3.1.22. The dimension of M�H equals dimM − dimH.

Proof. For the proof, see Section 12 in https://www.staff.science.uu.nl/

~ban00101/lie2012/lie2010.pdf.

Definition 3.1.23. For each x ∈M , the orbit map is defined as

fx : G −! M

g 7−! g · x

and is a smooth map. Its differential at e ∈ G is a map d(fx)e : TeG = g! TxM

Theorem 3.1.24. The orbit map fx : G 7−! M considered at the quotient

space G/Gx, i.e., f̄x : G/Gx 7−!M is an injective immersion.

Proof. Since Gx is a closed subgroup, by Theorem 2.1.45, it is a Lie subgroup,

so G/Gx it is a smooth manifold. Now:

1. First, we see that f̄x is injective: [g1] = [g2] for any g1, g2 ∈ G if and only

if g1 = a · g2 for some a ∈ Gx. Let g1, g2 ∈ G/Gx such that g1 · x = g2 · x.

Then, x = g−1
1 · g2 · x, so g−1

1 · g2 ∈ Gx and, then, [g1] = [g2]. Therefore,

f̄x is injective.

2. Then, we see that f̄x is an immersion. We simply have to check that

the differential d(f̄x)g : Tg(G) −! Tg·x(G · x) is injective and we can

do it evaluating its kernel. By invariance (because we can always post-

compose with d(lg−1), which is an isomorphism), it is only necessary to

study the case g = e. Then, we look at the kernel of d(f̄x)e. This kernel

is {X ∈ g | Xx = 0} and it is exactly the Lie algebra gx of Gx.

Corollary 3.1.25. Let G be a compact Lie group. Then, the orbits of any

G-action are smooth submanifolds.

Proof. A proper injective immersion is an embedding and we already proved

that f̄x : G/Gx 7−! M is an injective immersion. By compactness of G, we

have that the map is proper, and G/Gx ∼= G · x.
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Example 3.1.26. Take G = S1 and M = S2 and consider the action α in Exercise

3.1.8. The diffeomorphism αθ can be interpreted as the planar rotation of S2 of

angle θ around the z-axis (in cylindrical coordinates (r, θ, z)). Then, it is clear

that M/G, the set of orbits, is the interval [−1, 1].

Example 3.1.27. Like in Example 3.1.5, the action of R on M given by the flows

of X induces a natural partition of M into orbits of the form γx = {(φXt (x)) |
t ∈ R}. This is the motivation of the definition of orbit in Dynamical Systems.



Chapter 4

Introduction to Symplectic

and Poisson Geometry

This chapter follows [Aud91], [Can01], [DZ05] and [LPV13]. The examples in

the Poisson Geometry Section are obtained from [Mir14].

4.1 Symplectic Geometry

We start this section by revising the Lie algebra of symplectic manifolds, which

is that of tangent spaces.

4.1.1 Symplectic Linear Algebra

Definition 4.1.1. Let V be a vector space. Let ω : U × U −! R be a skew-

symmetric bilinear 2-form, i.e. ω ∈
∧2

U∗. The form ω is non-degenerate if

ω(v, u) = 0 ∀u ∈ U =⇒ v = 0.

Example 4.1.2. Take U = R2 with the standard coordinates (x, y). The form

ω = dx ∧ dy is non-degenerate.

Example 4.1.3. Take V = F + F ∗. The form ω that acts by:

ω((x, ϕ), (x′, ϕ)) = ϕ(x′)− ϕ′(x)

is skew-symmetric and non-degenerate.

If we consider the basis eij = (ei, e
∗
j ) for V , with ei ∈ F and e∗j ∈ F ∗, we can
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compute:

ω(eij , ekl) = e∗j (ek)− e∗l (ei) = (4.1.1)

=


1 if j = k and l 6= i

0 if j = k and l = i

−1 if j 6= k and l = i

0 if j 6= k and l 6= i

(4.1.2)

Then, ω(eij , ejk) = e∗j (ej) = 1 6= 0, implying that the form ω is non-degenerate.

Example 4.1.4. Consider Cn with the standard Hermitian form ω that acts the

following way. Identify Cn with R2n and consider elements (X,Y ) in Cn ∼= R2n.

Then, ω(X,Y ) = =〈X,Y 〉 = =XtȲ . This form is:

• Skew-symmetric, because =〈X,Y 〉 = −=〈X,Y 〉 = −=〈Y,X〉

• Non-degenerate, because if =〈X,Y 〉 = 0 ∀Y , then =〈X, iY 〉 = 0 ∀i =⇒
=⇒ 〈X,Y 〉 = 0∀Y h = 0.

Remark 4.1.5. In practice, the condition of non-degeneracy can be translated

into the following analytical condition. Take the matrix of the 2-form ω in some

coordinates (x1, . . . , xn, y1, . . . , yn) in such a way that ω =
∑
ωij · dxi ∧ dyj .

Then, ω is non-degenerate if and only if det(ωij) 6= 0.

Remark 4.1.6. The condition of non-degeneracy of ω is also equivalent to con-

dition for the map
# : TM −! T ∗M

X 7−! ιXω

of being an isomorphism.

Remark 4.1.7. Another equivalent condition of the non-degeneracy of ω is the

following:

ω ∈ Ω2(M2n) is non-degenerate ⇐⇒ ωn = ω ∧ · · · ∧ ω is a volume form.

Proposition 4.1.8. Let M2n be a compact manifold without boundary. A 2-

form ω on M can not be exact and non-degenerate at the same time.

Proof. Let us assume that ω is exact and we will arrive to contradiction. Sup-

pose ω = dβ for some β ∈ Ω1(M). Then:

d(β ∧ωn−1) = dβ ∧ωn−1 + (−1)1β ∧ d(ωn−1) = ω ∧ωn−1− β ∧ d(dβ)n−1 = ωn.
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Now, since ω is non-degenerate, it is a volume form and, then 0 <
∫
M
ωn. But,

on the other hand∫
M

ωn =

∫
M

d(β ∧ ωn−1) =

∫
∂M

β ∧ ωn−1 = 0

where we applied Stokes Theorem and that ∂M = ∅.

4.1.2 Symplectic Manifolds

Definition 4.1.9. Given an even dimensional manifold M2n, we say a smooth

2-form ω is a symplectic form if ω is closed (dω = 0) and non-degenerate (∀α ∈
Ω1(M),∃!X ∈ X(M) that solves ιXω = α).

Example 4.1.10. If λ is the Liouville 1-form on T ∗M , then ω = dλ is symplectic.

The non-degenerate forms in Examples 4.1.2, 4.1.3 and 4.1.4 are symplectic

forms.

Remark 4.1.11. By Remark 4.1.7, if ω is a symplectic form on a manifold M ,

then it is a volume form and, hence, M is orientable. Nevertheless, not all

orientable manifolds admit a symplectic form. For instance, S4 is an orientable

manifold that does not admit any symplectic form. Assume ω is symplectic, so

that dω = 0 and ω ∈ Ω2(S4) =⇒ [ω] ∈ H2(S4), [ω] 6= [0]. But H2(S4) = 0 =⇒
[ω] = [0], so we arrive to contradiction.

Definition 4.1.12. A symplectic manifold is a pair (M,ω) such that M is a

differential manifold and ω is a closed non-degenerate 2-form on M .

Example 4.1.13. Any orientable surface is a symplectic manifold.

Proposition 4.1.14. If M2n is a compact smooth manifold and admits a sym-

plectic structure, then H2(M) 6= 0.

Proof. Recall thatH2
DR(M) = ker(d : Ω2(M)! Ω3(M))�Im(d : Ω1(M)! Ω2(M))

Suppose that M is compact and admits a symplectic structure ω, which satis-

fies dω = 0. But, as we proved in Proposition 4.1.8, a 2-form can not be exact

if it is non-degenerate at the same time, so the class of ω within the quotient

H2
DR(M), i.e., [ω] = 0 can not be equal to 0.

Corollary 4.1.15. S2n does not admit a symplectic structure if n > 1.

Theorem 4.1.16. Let (M2n, ω) be a symplectic manifold. Then, for all p ∈
M , there exists a local coordinate system (x1, y1, . . . , xn, yn) such that ω =∑n
i=1 dxi ∧ dyi in a neighbourhood U of p.
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Proof. We use the exponential map. Let p be a point in M and

expp : U ⊂ TpM −! V ⊂M
u 7−! γu(1)

is a local diffeomorphism. Locally, (M,ω) is symplectic, so TpM is sym-

plectic with symplectic form ω̃1 = exp∗ ω. We express ω̃1 in a symplectic base

{e1, . . . , en, f1, . . . , fn} and we get ω̃0, which satisfies:

• ω̃0(ei, fj) = δij

• ω̃0(ei, ej) = 0

• ω̃0(fi, fj) = 0

In this symplectic base, if J is the matrix

(
0 −In
In 0

)
, then ω̃0(u, v) = uT ·J ·v.

Now, we define ω0 := (exp−1)∗ω̃0 and we apply the Moser’s trick. We define

the path

ωt = (1− t)ω0 + tω1 (4.1.3)

which is a path of closed forms, since dωt = (1 − t)dω0 + tdω1 = 0 be-

cause dω0 = dω1 = 0. The forms ωt are locally non-degenerated, because

det(ωij(p)) 6= 0 and, since det is a continuous map, there exists a neighbour-

hood U of p such that det(ωij(q)) 6= 0 for any q ∈ U .

By Poincaré Lemma, ω0 − ω1 = dβ (because ω1 and ω0 are closed and d is

linear). So ω0−ω1 is closed and, then, locally exact. Then, there exists a vector

field Xt such that ιXtωt = −β. Let ϕt be the flow of Xt and let us prove that

(ϕt)
∗ωt = ω0 = (ϕ1)∗ω1:

d

dt
(ϕ∗tωt) = ϕ∗t

(
d

dt
ωt + LXtωt

)
= (4.1.4)

= ϕ∗t (−ω0 + ω1 + dιXtωt + ιXtdωt) = (4.1.5)

= ϕ∗t (dβ + d(−β) + 0) = (4.1.6)

= ϕ∗t (0) = 0 (4.1.7)

Then, ϕ∗tωt is constant and, since ϕ∗0ω0 = 0, we have that (ϕt)
∗ωt = ω0.

Theorem 4.1.17. Let S be an orientable compact surface and ω0, ω1 two sym-

plectic forms on S. Then, the pair (S, ω0) is equivalent to the pair (S, ω1) (i.e.,

it exists a diffeomorphism ϕ : S ! S s.t. ϕ∗ω1 = ω0) if and only if [ω0] = [ω1],

where [ ] denotes the equivalence class in H2
DR(S).
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Proof. Let ω0, ω1 be two symplectic forms such that [ω0] = [ω1]. Then, ω1−ω0 =

dβ for some β ∈ Ω1(S). Now, consider the path of forms ωt = (1− t)ω0 + tω1,

which satisfies dωt = 0. Since S is of dimension 2 and ω0, ω1 are 2-forms, ω1 =

f ·ω0 for some smooth function f . Then, ωt = (1−t)ω0+tfω0 = (1−t(1−f))ω0.

If f > 0, by convexity ωt > 0. Let ϕt be the flow of Xt and follow as in the proof

of Theorem 4.1.16 considering now that ϕt is defined for every t by compactness

of S.

Definition 4.1.18. Let H ∈ C∞ be a smooth function on a symplectic man-

ifold (M,ω) (in Physics, a Hamiltonian, the function of total energy). The

Hamiltonian vector field XH is defined as the only solution of ιXHω = −dH.

Example 4.1.19. Take (R2n, ω =
∑
dxi ∧ dyi). Let us write the flow of XH :

XH =

n∑
i=1

Xxi
H

∂

∂xi
+

n∑
i=1

Xyi
H

∂

∂yi
(4.1.8)

So, on the one hand:

ιXHω = ω(XH , ·) =

n∑
i=1

Xxi
H dyi +

n∑
i=1

−Xyi
H dxi (4.1.9)

And, on the other hand:

− dH =

n∑
i=1

−∂H
∂xi

dxi +

n∑
i=1

−∂H
∂yi

dyi (4.1.10)

This leads to the Hamiltonian equations:{
Xxi
H dyi = ẋi = −∂H∂yi dyi

Xyi
H dxi = ẏi = ∂H

∂xi
dxi

(4.1.11)

Definition 4.1.20. A diffeomorphism ϕ : (M1, ω1) ! (M2, ω2) between sym-

plectic manifolds is called a symplectomorphism if ϕ∗ω2 = ω1.

Lemma 4.1.21. Symplectomorphisms are volume preserving.

Proof. Let ϕ : (M2n
1 , ω1) ! (M2n

2 , ω2) be a symplectomorphism between sym-

plectic manifolds. Then, ωn1 ∈ Ω2n(M1), ωn2 ∈ Ω2n(M2) are volume forms, i.e.,

they are not zero. Hence:

Vol(M1) =

∫
M1

ωn1 =

∫
M1

(ϕ∗ω2)n =

∫
ϕ−1(M2)

ϕ∗(ωn2 ) =

∫
M2

ωn2 = Vol(M2)

(4.1.12)
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Remark 4.1.22. Let (Σ2
1, ω1), (Σ2

2, ω2) be two symplectic compact surfaces, equipped

with area forms. Then, there exists a symplectomorphism ϕ : Σ1 ! Σ2 if and

only if:

1. Σ1
∼= Σ2 (⇐⇒ X (Σ1) = X (Σ2)).

2.
∫

Σ1
ω1 =

∫
Σ2
ω2.

Definition 4.1.23. The Poisson Bracket associated to a symplectic manifold

(M,ω) is defined by

{·, ·} : C∞(M)× C∞(M) −! C∞(M)

(f, g) 7−! ω(Xf , Xg)

Proposition 4.1.24. The Poisson Bracket satisfies:

1. {f, g} = −{g, f} (anti-symmetry)

2. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)

3. {f, gh} = h{f, g}+ g{f, h} (Leibniz rule)

Proof. 1. {f, g} = ω(Xf , Xg) = −ω(Xg, Xf ) = −{g, f}, by anti-symmetry

of ω

2. Recall that if ω ∈ Ωk(M), then dω ∈ Ωk+1(M) and:

dω(X0, . . . , Xk) =

k∑
i=0

(−1)iXiω(X0, . . . , Xi−1, Xi+1, . . . , Xk)+ (4.1.13)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk)

(4.1.14)

Hence:

dω(Xf , Xg, Xh) = (4.1.15)

=Xfω(Xg, Xh)−Xgω(Xf , Xh) +Xhω(Xf , Xg)− (4.1.16)

− ω([Xf , Xg], Xh) + ω([Xf , Xh], Xg)− ω([Xg, Xh], Xf ) = (4.1.17)

={f, {g, h}} − {g, {f, h}}+ {h, {f, g}}− (4.1.18)

− {{f, g}, h}+ {{f, h}, g} − {{g, h}, f} = (4.1.19)

=2 ({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}) (4.1.20)

Since dω = 0, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0
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3. Xf (g) = dg(Xf ) = −ιXgω(Xg) = ω(Xf , Xg) = {f, g}. Hence,

{f, gh} = Xf (gh) = d(gh)(Xf ) = (gdh+ hdg)(Xf ) = g{f, h}+ h{f, g}

Lemma 4.1.25. X{f,g} = [Xf , Xg]

Proof. We use ι[X,Y ] = LXιY − ιY LX to compute:

ι[Xf ,Xg]ω = LXf ιXgω − ιXgLXfω = (4.1.21)

= d ◦ ιXf ◦ ιXgω + ιXf ◦ d ◦ ιXgω︸ ︷︷ ︸
=−d2g=0

−ιXg ◦ d ◦ ιXfω︸ ︷︷ ︸
=−d2f=0

−ιXg ◦ ιXf ◦ dω︸︷︷︸
=0

=

(4.1.22)

= d ◦ ιXf ◦ ιXgω = dω(Xg, Xf ) = −dω(Xf , Xg) = −d{f, g} (4.1.23)

Remark 4.1.26. We take the following two conventions:

1. ω(XH , ·) = −dH

2. ιXβ(Y1, . . . , Yk−1) = β(X,Y1, . . . , Yk−1)

Corollary 4.1.27. Φ : f 7−! Xf : (C∞(M), {·, ·}) −! (X(M), [·, ·]) is a Lie

algebra morphism.

Theorem 4.1.28. Let H ∈ C∞ be a Hamiltonian and XH the corresponding

Hamiltonian vector field. Then, XH(H) = 0

Proof. Consider the Poisson bracket {·, ·} defined by

{f, g} = ω(Xf , Xg) = −ω(Xg, Xf ) = −{g, f} = Xf (g) (4.1.24)

where Xf is defined by ιXfω = −df and analogously for Xg. Then, by skew-

symmetry of {·, ·}, XH(H) = 0.

Definition 4.1.29. Let (M,ω) be a symplectic manifold. A vector field X ∈
X(M) is called symplectic if it preserves ω, i.e., if LXω = 0, or dιXω = 0.

Remark 4.1.30. We will denote by XSymp(M) = {X ∈ X(M) | dιXω = 0} the set

of symplectic vector fields on M and by XHam(M) = {X ∈ X(M) | ιXω = −dβ}
the set of symplectic vector fields on M .

Lemma 4.1.31. XHam(M) ⊂ XSymp(M).
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Proof. Take X ∈ XHam(M). Then:

LXfω = dιXfω + ιXf dω = d(−df) + 0 = −d2f = 0 (4.1.25)

Lemma 4.1.32. H1(M) = XSymp(M)�XHam(M)

Example 4.1.33. Take (R2n, ω = dx ∧ dy). X = ∂
∂x1

is Hamiltonian because

ιXω = dy1. Hence, it is symplectic.

Example 4.1.34. Take (S2, ω = dh ∧ dθ). X = ∂
∂θ is Hamiltonian because

ιXω = −dh. Hence, it is symplectic.

Example 4.1.35. Take (R2n, ω = dθ1∧ θ2). X = ∂
∂θ1

is not Hamiltonian because

ιXω = dθ2 and θ2 is not a global function. It is symplectic.

Lemma 4.1.36. Let f,H ∈ C∞(M). Then,

{f,H} = 0 ⇐⇒ f is constant along the flow of XH (4.1.26)

Proof. {f,H} = −XH(f) = − d
dt (f ◦ γ)(t)

∣∣
t=0

= 0

Definition 4.1.37. Suppose f,H ∈ C∞(M) satisfy {f,H} = 0. Then, f is

called an integral of motion of H.

Definition 4.1.38. Let (M2n, ω) be a symplectic manifold. A Hamiltonian sys-

tem (M,ω,H ∈ C∞(M)) is called completely integrable if ∃f1, . . . , fn ∈ C∞(M)

such that:

1. {fi, fj} = 0 for all i, j = 1, . . . , n

2. df1 ∧ · · · ∧ dfn 6= 0 a.e.

Example 4.1.39. Any Hamiltonian system defined on a surface, (Σ2, ω,H ∈
C∞(M)), is completely integrable.

Example 4.1.40. The planar pendulum and the spherical pendulum are com-

pletely integrable systems.

Definition 4.1.41. Let G be a Lie group and (M,ω) a symplectic manifold. A

group action ρ : G −! Diff(M) is a symplectic action if ρ : G −! Symp(M) ⊂
Diff(M), where Symp(M) is the set of symplectomorphisms on M .
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Example 4.1.42. Take (R2n, ωst) and X = ∂/∂x1. The flow of X defines a

symplectic action ψ : R −! Symp(R2n, ωst) which is the following:

ψ(t)(x1, y1, . . . , xn, yn) = (x1 + t, y1, . . . , xn, yn) (4.1.27)

Definition 4.1.43. A symplectic action ρ of S1 or R on (M,ω) is called a

Hamiltonian action if the field

Xx =
d

dt
ρt(x)

∣∣∣∣
t=0

is Hamiltonian.

4.1.3 Revision of Lie Actions. Definitions

Definition 4.1.44. Let G be a Lie group. The following map:

ψ : G −! Diff(G)

g 7−! ψ(g) = ψg

where ψg(h) = ghg−1, the conjugation, is a Lie group action, the conjugation

action.

Definition 4.1.45. The map Adg = d(ψg)e : g −! g induced a map

Ad : G −! GL(g)

, the adjoint action.

Definition 4.1.46. The map Ad∗ : G −! GL(g∗) is the coadjoint action. It

acts as:

Ad∗g(X)(ξ) =< X,Ad∗g−1(ξ) > (4.1.28)

Definition 4.1.47. A group action ρ of G on (M,ω) is Hamiltonian if ∃µ :

M −! g∗ such that:

1. For every X ∈ g, {exp(tX) | t ∈ R} ⊂ G,

X#
x =

d

dt
(exp(tX) · x)

∣∣
t=0

,

ιX#ω = −dµX ,

where µX(x) :=< µ(x), X >.
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2. µ is equivariant with respect to the coadjoint action and the Lie group

action, i.e.:

Ad∗g ◦ µ = µ ◦ ρg
for every g ∈ G.

Then, (M,ω,G, µ) is called a Hamiltonian G-space and µ is called moment map.

Example 4.1.48. The Hamiltonian formulation of mechanical problems in Physics

is one of the motivations of the development of symplectic geometry. Suppose

H ∈ C∞(Mn) is the Hamiltonian (or energy function) of a system and assume

that H = H(q, p), where (q, p) ∈ T ∗M , the cotangent bundle of M . In this

setting, q is the positions vector and p is the momenta vector. Then, the system

of ODEs that describe the evolution of positions and momenta is:{
ṗ = −∂H∂q
q̇ = ∂H

∂p

(4.1.29)

Consider the 1-form α =
∑n
i=1 pidqi ∈ Ω1(M), called the Liouville 1-form. Its

differential is dα =
∑n
i=1 dpi ∧ dqi = ω ∈ Ω2(M) and the Hamilton’s equations

(4.1.29) can be condensed in the expression ιXHω = −dH.

4.2 Poisson Geometry

Definition 4.2.1. Let M be a smooth manifold. A C∞ smooth Poisson struc-

ture is an R-bilinear operation

{·, ·} : C∞(M) −! C∞(M)

(f, g) 7−! {f, g}

which satisfies:

1. Anti-symmetry, {f, g} = −{g, f} for any f, g ∈ C∞(M)

2. Leibniz rule, {f, g · h} = g · {f, h}+ {f, g} · h

3. Jacobi identity, {f, {g, h}}+ {g, {h, f}}+ {g, {f, g}} = 0

The operation {·, ·} is also called Poisson bracket.

Example 4.2.2. Let M be any smooth manifold. Then, the operation

{·, ·} : C∞(M) −! C∞(M)

(f, g) 7−! 0

is a Poisson structure because it automatically satisfies all of the required prop-

erties.
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Remark 4.2.3. Example 4.2.2 shows that there are no topological obstructions

on a manifold to admit a Poisson structure, i.e., any manifold can admit a

Poisson structure.

Example 4.2.4. Let (M2n, ω) be a symplectic manifold. Let XH be Hamiltonian

vector field of H ∈ C∞, i.e., the solution of ιXHω = −dH. Then, the operation

{·, ·} : C∞(M) −! C∞(M)

(f, g) 7−! ω(Xf , Xg)

is a Poisson structure on M . Since ω is 2-form, {f, g} is bilinear. It is also

anti-symmetric by anti-symmetry of ω. It satisfies Leibniz rule because

{f, g} = ω(Xf , Xg) = ιXfω(Xg) = 〈−df,Xg〉 = −Xg(f) = Xf (g),

so {f, ·} is Xf (g), a derivation. Explicitly:

{f, g · h} = ιXfω(g · h) = ιXfω(g) · h+ g · ιXfω(h) = {f, g} · h+ g · {f, h}.

It satisfies Jacobi identity because, since ω is closed, dω(Xf , Xg, Xh) = 0, and

0 = dω(Xf , Xg, Xh) = (4.2.1)

=Xf (ω(Xg, Xh))−Xg(ω(Xf , Xh)) +Xh(ω(Xf , Xg))− (4.2.2)

− ω([Xf , Xg], Xh) + ω([Xf , Xh], Xg)− ω([Xg, Xh], Xf ) = (4.2.3)

= {f, {g, h}} − {g, {f, h}}+ {h, {f, g}}− (4.2.4)

− {{f, g}, h}+ {{f, h}, g} − {{g, h}, f} = (4.2.5)

= 2 ({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}) (4.2.6)

So {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Remark 4.2.5. According to Darboux Theorem (4.1.16), on any symplectic man-

ifold M2n there exist local coordinates (x1, . . . , xn, y1, . . . , yn) such that the

symplectic form writes ω =
∑n
i=1 dxi ∧ dyi. In these coordinates, the Poisson

bracket writes as

{f, g}st =

n∑
i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
.

This is the formula that originally Siméon Denis Poisson presented in his ar-

ticle Mémoire sur la variation des constantes arbitraires dans les questions de

mécanique in 1809.

Exercise 4.2.6. Consider R2 with the Poisson structure

{f, g} = H(x, y) ·
(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
.

Proof that it is indeed a Poisson structure for any H ∈ C∞(R2).



70CHAPTER 4. INTRODUCTION TO SYMPLECTIC AND POISSONGEOMETRY

Remark 4.2.7. In Exercise 4.2.6, if H(x, y) is a constant function, then the Pois-

son structure is the standard Poisson structure of the symplectic case multiplied

by a constant.

If H(x, y) is regular (the differential does not vanish at any point), then in a

neighbourhood of any point, i.e. locally, H(x, y) can be written as H(x, y) = x

and the Poisson structure looks like

{f, g} = x ·
(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
.

In this case, when x 6= 0 it gives a symplectic structure and when x = 0 it gives

the structure in Example 4.2.2, the zero Poisson structure. This structure is

called b-symplectic structure or log-symplectic structure.

Example 4.2.8. Consider (S2, {·, ·}), with coordinates h (for the height) and θ

(for the angle) and with the Poisson structure defined as {f, g} = h · {f, g}st.
This structure is symplectic on the North hemisphere (h > 0) and also on the

South hemisphere (h < 0), while all the points in the equator are symplectic

leaves (of dimension 0).

IfH(x, y) has singularities, the Poisson structure can locally have many other

forms. For instance, the so-called c-symplectic structure is the one defined by

{f, g} = x · y · {f, g}st.

4.2.1 Local Coordinates

We assume in this section that we have a local coordinate system (x1, . . . , xn) in

a Poisson manifold and we denote by ωij the Poisson bracket of the coordinate

functions xi, xj , i.e. ωij = {xi, xj}.

Proposition 4.2.9. The functions ωij have the following properties:

1. ωij = −ωji, for any i, j.

2. {ωij , xk}+ {ωjk, xi}+ {ωki, xj} = 0, for any i, j, k.

3.
∑n
l=1

(
ωli

∂ωjk
∂xl

+ ωlj
∂ωki
∂xl

+ ωlk
∂ωij
∂xl

)
, for any i, j, k.

Proposition 4.2.10. Using Property 3 in Proposition 4.2.9, the Poisson bracket

can be computed as:

{f, g} = [df ]T ·ω · [dg],

where ω = (ωij)ij.
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Conversely, given a skew-symmetric matrix ω = (ωij)ij, the formula

{f, g} =

n∑
i,j=1

ωij
∂f

∂xi

∂g

∂xj

defines a Poisson bracket if the ωij satisfy Property 3 in Proposition 4.2.9.

Example 4.2.11. Suppose that ωij are linear functions for any i, j and assume

that they have the form ωij =
∑n
k=1 c

k
ijxk, with ckij constants. Then, we have

the following equivalence:

ωij satisfy Property 3 in Prop 4.2.9 ⇐⇒ ckij satisfy Jacobi identity, (4.2.7)

which is the same as to say that the ckij are the structural constants of the dual

of a Lie subalgebra of Rn.

Example 4.2.12. Suppose that ωij are constant functions for any i, j. The Pois-

son structure in this case is called a regular Poisson structure, and the matrix

ω = (ωij)ij is of constant rank.

4.2.2 Bivector fields

Definition 4.2.13. Let M be a smooth manifold. A bivector field Π on M is

a section of the two exterior power of the tangent bundle, i.e., Π = Γ(
∧2

TM).

In local coordinates:

Π =

n∑
i,j=1

Πij
∂

∂xi
∧ ∂

∂xj

Proposition 4.2.14. Let (M, {·, ·}) be a Poisson structure in a smooth man-

ifold. Then, there exists a bivector field Π such that, for any pair of functions

f, g ∈ C∞(M), {f, g} = Π(df, dg).

Proof. The coefficients Πij of the bivector field Π are defined locally by:

Πij := ωij = {xi, xj} (4.2.8)

and the equality {f, g} = Π(df, dg) follows from the definition and bilinearity of

{·, ·}.

Proposition 4.2.15. Given a bivector field Π, the operator {f, g}Π := Π(df, dg)

satisfies:

1. Anti-symmetry

2. R-bilinearity
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3. Leibniz rule

Proof. Anti-symmetry and bilinearity are automatic from definition of a bivector

field Π. Since {f, ·} = Π(df, ·) acts as a derivation, it also satisfies Leibniz

rule.

Remark 4.2.16. The operator {f, g}Π := Π(df, dg) does not satisfy Jacobi iden-

tity in general. In Example 4.2.17, for instance, Jacobi identity fails. In conse-

quence, not any bivector field gives raise to a Poisson structure. If Π satisfies

[Π,Π] = 0, where [·, ·] is the Schouten bracket (see Definition 4.2.18), then it

satisfies Jacobi identity and it does give raise to a Poisson structure. From now

on, if (M,Π) is said to be a Poisson structure, it will be assumed that [Π,Π] = 0.

Example 4.2.17. Let M = R3 and take Π = ∂
∂x ∧

∂
∂y + x ∂

∂x ∧
∂
∂z . In this case,

by definition, {x, y} = 1 and {x, z} = x. Then:

{x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = (4.2.9)

={x, 0}+ {y,−x}+ {z, 1} = (4.2.10)

=0 + {x, y}+ 0 = (4.2.11)

=1 6= 0 (4.2.12)

meaning that the operator {f, g}Π := Π(df, dg) with the bivector field Π =
∂
∂x ∧

∂
∂y + x ∂

∂x ∧
∂
∂z does not satisfy Jacobi identity.

The Schouten Bracket

Definition 4.2.18. The Schouten bracket is the extension of the Lie bracket

of vector fields to alternating multi-vector fields. If A = a1 ∧ · · · ∧ an and

B = b1 ∧ · · · ∧ bm are two multi-vector fields of degree n and m respectively,

then the Schouten Bracket between A and B is defined in terms of the Lie

bracket of vector fields [ai, bj ] by:

[A,B] =
∑
i,j

(−1)i+j [ai, bj ]a1 · · · ai−1ai+1 · · · amb1 · · · bj−1bj+1 · · · bn, (4.2.13)

where all the products are wedge products.

Exercise 4.2.19. Let A = a1 ∧ · · · ∧ aa, B = b1 ∧ · · · ∧ bb and C = c1 ∧ · · · ∧ cc be

two multi-vector fields of degree a, b and c respectively. Proof that the Schouten

bracket satisfies the following properties:

1. Graded anti-symmetry:

[A,B] = −(−1)(a−1)(b−1)[B,A]
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2. Graded Leibniz rule:

[A,B ∧ C] = [A,B] ∧ C + (−1)(a−1)bB ∧ [A,C]

3. Graded Jacobi identity:

(−1)(a−1)(c−1)[A, [B,C]]+(−1)(b−1)(a−1)[B, [C,A]]+(−1)(c−1)(b−1)[C, [A,B]] = 0

Exercise 4.2.20. Proof that the Schouten bracket satisfies [Π,Π] = 0 for Π =

y ∂
∂x ∧

∂
∂y + ∂

∂x ∧
∂
∂z .

4.2.3 The Poisson category

Definition 4.2.21. If (M, {·, ·}1) and (N, {·, ·}2) are two Poisson structures on

the manifolds M and N , a mapping φ : (M, {·, ·}1) −! (N, {·, ·}2) is called a

Poisson morphism if φ∗({f, g}2) = {φ∗f, φ∗g}1 for any f, g ∈ C∞(N).

Example 4.2.22. Let (M, {·, ·}) be a Poisson manifold and g∗ the dual of a Lie

algebra. Then, a moment map F : (M, {·, ·}) −! g∗ is a Poisson morphism.

Example 4.2.23. Consider a Lie algebra g, a Lie subalgebra h and the inclusion

i : h ↪! g. The dual of the inclusion, i∗ : g∗ −! h∗ is a Poisson morphism.

Definition 4.2.24. Consider a Poisson manifold (M,ΠM ) and a submanifold

(N,ΠN ) which also has a Poisson structure. (N,ΠN ) is a Poisson submanifold

if the inclusion map (N,ΠN )
i
↪! (M,ΠM ) is a Poisson morphism.

Definition 4.2.25. Let (M,Π) be a Poisson manifold. A Poisson vector field

is a vector field X such that LXΠ = 0.

Remark 4.2.26. If X is a Poisson vector field, ϕXt , the flow of X, is a Poisson

morphism.

Remark 4.2.27. The following equivalence holds and gives an alternative defini-

tion of a Poisson vector field:

LXΠ = 0 ⇐⇒ X({f, g}) = {X(f), g}+ {f,X(g)} (4.2.14)

Definition 4.2.28. Let (M, {·, ·}) be a Poisson manifold. A Hamiltonian vector

field associated to a function f ∈ C∞(M) is defined by Xf = {f, ·}.

Remark 4.2.29. In notation of vector fields, Xf = Π(df, ·).

Proposition 4.2.30. Suppose Xf is a Hamiltonian vector field. Then:

1. Xf is a Poisson vector field.



74CHAPTER 4. INTRODUCTION TO SYMPLECTIC AND POISSONGEOMETRY

2. Xf (f) = 0.

3. If Xg is also Hamiltonian, [Xf , Xg] = X{f,g}

Proof. Let (M, {·, ·}) be a Poisson manifold. Suppose Xf is the Hamiltonian

vector field associated to f .

1. Xf ({g, h}) = {f, {g, h}} = {g, {f, h}}+ {{f, g}, h} =

= {g,Xf (h)}+ {Xf (g), h} for any g, h ∈ C∞(M), so Xf is Poisson.

2. Xf (f) = {f, f} = 0 by anti-symmetry.

3. See the proof of Lemma 4.1.25.

4.2.4 Symplectic foliations, splitting theorem and normal

forms

Theorem 4.2.31 (Stefan-Sussmann Theorem). Let M be a smooth manifold

and let D be a smooth distribution. Then, D is integrable if and only if it is

generated by a family C of smooth vector fields, and is invariant with respect to

C.

Consider a Poisson manifold (M, {·, ·}) and the set D = {Xf | f ∈ C∞(M)}
of Hamiltonian vector fields, which is, in fact, a distribution.

Proposition 4.2.32. The distribution D = {Xf | f ∈ C∞(M)} satisfies the

conditions of Stefan-Sussmann and, therefore, there exists a (singular) foliation

F integrating D which is symplectic.

Theorem 4.2.33 (Weinstein Splitting Theorem, ’83). In a neighbourhood of a

point p in a Poisson manifold (M, {·, ·}) there exist local coordinates centered at

p (x1, y1, . . . , xk, yk, z1, . . . , zl) such that:

Π =

k∑
i=1

∂

∂xi
∧ ∂

∂yi
+

l∑
i,j=1

ϕij(z)
∂

∂zi
∧ ∂

∂zj
(4.2.15)

and with ϕij(0) = 0.

Remark 4.2.34. Weinstein Splitting Theorem tells us that, at each point p ∈M ,

the Poisson structure splits in two parts. In a neighbourhood of p, the Poisson

structure Π is the sum of ΠS =
∑k
i=1

∂
∂xi
∧ ∂

∂yi
, a part which is dual to the

symplectic structure of the leaf through p, and ΠT

∑l
i,j=1 ϕij(z)

∂
∂zi
∧ ∂
∂zj

. The

condition [Π,Π] = 0 on the whole manifold implies that ΠT is a Poisson structure

by itself and it is called the transverse Poisson structure.
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Remark 4.2.35. This transverse Poisson structure does not depend on the par-

ticular transversal, it only depends on the symplectic leaf.

Remark 4.2.36. Weinstein Splitting Theorem is the closest Poisson analogous

to Darboux Theorem (4.1.16) for symplectic manifolds.

Remark 4.2.37. The rank of the Poisson structure Π at p is 2k and it equals the

dimension of the symplectic leaf at p.

Definition 4.2.38. Let (M,Π) be a Poisson manifold. The anchor map is the

following map:

Π# : T ∗M −! TM

α 7−! Π(α, ·)

Remark 4.2.39. Recall that Dx = {Xf | f ∈ C∞(M)} is the distribution tangent

to the symplectic foliation at a point x ∈ M . This distribution Dx is precisely

the image of Π#(x) and the rank of Π at x equals Π#
x , the dimension of the

symplectic leaf through x.

Theorem 4.2.40 (Conn, Ginzburg). Consider a Poisson manifold (M,Π) and

the splitting Π = ΠS + ΠT given by Theorem 4.2.33. If the linear part of ΠT is

semisimple of compact type, then we can write, locally:

Π =

k∑
i=1

∂

∂xi
∧ ∂

∂yi
+

l∑
i,j,k=1

ckijzk
∂

∂zi
∧ ∂

∂zj
. (4.2.16)

Remark 4.2.41. The linearization of the transverse structure, Π
(l)
T , corresponds

to the dual of a Lie algebra of semisimple compact type.

Remark 4.2.42. It is necessary to ask the linear part to be of compact type.

To show it, take the following counterexample of non-compact type: Consider

SL(2,R)∗, which is a semisimple algebra but is not of compact type. There is

a way to perturb SL(2,R)∗ in such a way that it is not equivalent to the linear

model (see [Wei83]).

4.2.5 Poisson Cohomology

The definition of the Schouten bracket (4.2.18) shows that the bracket of a

multi-vector field A of degree a with a multi-vector field B of degree b produces

a multi-vector field of degree a+b−1. If B is a bivector field, then the Schouten

Bracket of any multi-vector field A with B increases the degree of A in one.

Then, it is a good candidate for the differential of a Poisson Cohomology.
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Lemma 4.2.43. Let (M,Π) be Poisson structure. Given A a multi-vector field

of any degree a, the following equation holds:

[Π, [Π, A]] = 0 (4.2.17)

Proof. By the graded Jacobi identity applied to the Schouten bracket of A of

degree a and Π of degree 2, and using that [Π,Π] = 0, we obtain:

(−1)a−1[Π, [Π, A]]− [Π, [A,Π]] = 0 (4.2.18)

By the graded anti-symmetry of the Schouten bracket:

[A,Π] = −(−1)a−1[Π, A] = (−1)a[Π, A] (4.2.19)

So, combining 4.2.18 and 4.2.19:

0 =(−1)a−1[Π, [Π, A]]− [Π, [A,Π]] = (4.2.20)

=(−1)a−1[Π, [Π, A]]− (−1)a[Π, [Π, A]] = (4.2.21)

=
(
(−1)a−1 + (−1)a−1

)
[Π, [Π, A]] = (4.2.22)

=2(−1)a−1[Π, [Π, A]] (4.2.23)

Definition 4.2.44. Let (M,Π) be a Poisson manifold. Consider multi-vector

fields of degree k, i.e., elements of Xk(M), we can construct the following chain:

· · · dΠ−! Xk−1(M)
dΠ−! Xk(M)

dΠ−! Xk+1(M)
dΠ−! · · · (4.2.24)

where dΠ(A) = [Π, A]. Because of Lemma 4.2.43, d2
Π = [Π, [Π, A]] = 0. There-

fore, we can define the Poisson Cohomology groups Hk
Π(M) as:

Hk
Π(M) = ker

(
dΠ : Xk(M)! Xk+1(M)

)
�Im

(
dΠ : Xk−1(M)! Xk(M)

)
(4.2.25)

Example 4.2.45. In a manifold (M,Π) with the zero Poisson structure, i.e.,

with Π = 0, the differential is dΠ = 0. Then, all the cohomology groups of

the Poisson cohomology are the multi-vector fields, Hk
Π(M) = Xk(M). It is an

infinite-dimensional cohomology.

Example 4.2.46. In a manifold (M,ω) with a symplectic structure, the Pois-

son cohomology groups are isomorphic to the De Rham cohomology groups,

Hk
Π(M) ∼= Hk

DR(M).
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This holds because the anchor map Π# : T ∗M ! TM (see Definition 4.2.38)

is an isomorphism. The the wedge product keeps the isomorphy and, therefore,

we can compare both cohomologies because Π# induces a map from forms to

multi-vector fields such that this diagram commutes:

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·

· · ·
∧k−1

(M)
∧k

(M)
∧k+1

(M) · · ·

dDR dDR

Π#

dDR

Π#

dDR

Π#

dΠ dΠ dΠ dΠ

(4.2.26)

Example 4.2.47. Consider a b-symplectic manifold, i.e., a Poisson manifold

(M2n,Π) of even dimension such that the map

Πn : M2n −!
∧2n

(TM)

x 7−! Πn(x)

is transverse to the zero section of the fiber bundle of the manifold. In this

manifold, locally Π writes in the following way:

Π =

k∑
i=1

∂

∂xi
∧ ∂

∂yi
+ z

∂

∂z
∧ ∂

∂t
(4.2.27)

And there is the following result.

Theorem 4.2.48. Let M be a compact manifold. Then, the following holds:

Hk
Π(M) ∼= Hk

DR(M)⊕Hk−1
DR (Z) (4.2.28)

where Z = {p ∈ M | Πn(p) = 0}, a codimension 1 submanifold of M which is

intrinsically associated to the b-Poisson structure.

So the cohomology in the b-symplectic case is almost like in the symplectic

case but with an additional term.

Example 4.2.49. If g is a Lie algebra and U neighbourhood a representation. In

general, Hk
Π(U) ∼= H∗ (g, C∞(U)) ⊗ C∞Ind(M). We use the Chevalley Eilenberg

Cohomology, which is associated to the representation of the Lie algebra on the

space C∞(M) given by the Poisson bracket {·, ·}.

In the case that g a semisimple Lie algebra of compact type. The Poisson

cohomology of g a is:

H∗Π(U) ∼= H∗(g)⊗ (C∞(U))
G
.
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Interpretation of the Poisson cohomology groups

Assume (M,Π) is a Poisson structure. The cohomology group H0
Π(M) is {f ∈

C∞(M) | Xf = 0} the set of functions such that the Hamiltonian vector field

is zero. It is called the set of Casimir functions and can be also written as

{f ∈ C∞(M) | {f, g} = 0∀g ∈ C∞(M)}.

The cohomology group H1
Π(M) is the set of Poisson vector fields quotiented

by the set of Hamiltonian vector fields, because, ker ([Π, A]) for A ∈ X(M) =

C∞(M) is exactly the set of Poisson vector fields and Im ([Π, f ]) for f ∈ X0(M) =

C∞(M) is precisely the set of Hamiltonian vector fields.

The cohomology group H2
Π(M) is, explicitly:

H2
Π(M) = {Π | [Π,Π] = 0}�{Π | Π = [Π, X]∀X ∈ X(M)}

It can be interpreted in terms of first order infinitesimal deformations modulo

trivial deformations.

Up to this point, it is possible to make the following analogies between

Symplectic and Poisson structures:

Symplectic Structure Poisson Structure

ω ∈ Ω2(M) Π ∈ X2(M)

dω = 0 [Π,Π] = 0

ιXfω = −df Xf = Π(df, ·)

LXω = 0 LXΠ = 0

Hk
DR(M) Hk

Π(M)

Definition 4.2.50. Two Poisson structures Π1,Π2 on a manifold M are com-

patible if [Π1,Π2] = 0.

Remark 4.2.51. If Π1 and Π2 are compatible, then Π2 is a 2-cocycle in H2
Π1

(M)

and vice-versa.

Remark 4.2.52. If Π1,Π2 are two Poisson structures on a manifold M , then

αΠ1 + βΠ2, with α, β constants, is a Poisson structure if and only if Π1 and Π2

are compatible. This is because [αΠ1 + βΠ2, αΠ1 + βΠ2] = 2αβ[Π1,Π2] since

[Π1,Π1] = [Π2,Π2] = 0.
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Definition 4.2.53. A vector field X is called bi-Hamiltonian with respect to

two compatible Poisson structures Π1 and Π2 if X is at the same time Hamil-

tonian with respect to Π1 and with respect to Π2, i.e., if X = XΠ1

f1
= XΠ2

f2
.

Proposition 4.2.54. Let X be bi-Hamiltonian and let f1, f2 be its Hamiltonian

functions. Then, {f1, f2}Π1
= {f1, f2}Π2

= 0.

Proof. We know that {f1, f1}Π1
= 0, by anti-symmetry. Then:

0 = {f1, f1}Π1 = XΠ1

f1
(f1) = XΠ2

f2
(f1) = {f2, f1}Π2 (4.2.29)

Changing the role of f1 and f2 the equality {f1, f2}Π1
is also proved.

Example 4.2.55. Take a holomorphic function F : C2 ! C and decompose it

as F = G+ iH with G,H : R2 7! R. The Cauchy-Riemann equations for F in

coordinates zi = xi + yi are:

∂G

∂xi
=
∂H

∂yi
,
∂G

∂yi
= −∂H

∂xi
(4.2.30)

and imply that there is a vector field which is bi-Hamiltonian with respect to

two Poisson structures (in this case symplectic structures) which are compatible.

Then, we can rewrite the Cauchy-Riemann equations as:

{G, ·}0 = {H, ·}1 , {G, ·}1 = −{H, ·}0 (4.2.31)

4.2.6 Integrable Systems

If we decompose the symplectic form in ω = dz1 ∧ dz2 = ω0 + iω1, the bracket

{·, ·}0 corresponds to the Poisson bracket associated to ω0 and the bracket {·, ·}1
corresponds to the Poisson bracket associated to ω1. This implies automatically

that the real and imaginary parts of a holomorphic function provide commuting

functions for both Poisson structures.

Definition 4.2.56. Let (M,ω) be a symplectic manifold. An integrable system

on M is given by n functions f1, . . . , fn such that:

1. f1, . . . , fn are independent in a dense set.

2. {fi, fj} = 0 for any i, j, where {fi, fj} = ω(Xfi , Xfj ).

Remark 4.2.57. The functions f1, . . . , fn are independent in a dense set if and

only if df1 ∧ · · · ∧ dfn 6= 0 in a dense set.
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Exercise 4.2.58. Given two functions H,K ∈ C∞(R3), consider the system of

differential equations given by:

(ẋ, ẏ, ż) = dH ∧ dK (4.2.32)

The field dH ∧ dK is a bi-Hamiltonian vector field. We define the following two

Poisson structures:

{·, ·}H : C∞(R3)× C∞(R3) −! C∞(R3)

(f, g) 7−! det(df, dg, dH) =: {f, g}H

{·, ·}K : C∞(R3)× C∞(R3) −! C∞(R3)

(f, g) 7−! det(df, dg, dK) =: {f, g}K
Proof that the flow of the vector field {K, ·}H := det(dK, ·, dH), which is the

same as {−H, ·}K , is the solution of 4.2.32 and it is bi-Hamiltonian with respect

to {·, ·}H and {·, ·}K .

Example 4.2.59. Consider a surface and suppose an integrable system is defined

on it. Since it is a 2-dimensional manifold, the integrable system is given by a

single function µ. If we assume that the fibers are compact, then they can only

be circles or points and they form a fibration.

If the surface is a 2-sphere and the function is the height function h, the

dynamics of the system is given by rotations around the height axis. Explicitly,

if we consider the symplectic setting and we take ω = dh ∧ dθ, the dynamical

system is given by ι ∂
∂θ
ω = −dh. It is a Hamiltonian system and h is a moment

map.

Definition 4.2.60. Let (M,Π) be a Poisson manifold of dimension n and of

(maximal) rank 2r. A family of functions f1, . . . , fs ∈ C∞(M) defines a Liouville

integrable system on (M,Π) if:

1. f1, . . . , fs are independent almost everywhere (i.e., their differentials are

independent on a dense open subset of M),

2. f1, . . . , fs are pairwise in involution,

3. r + s = n.

Viewed as a map, F := (f1, . . . , fs) : M 7! Rs is called the momentum map of

the system.

For a given Liouville integrable system, we have two different foliations.

First, we can consider the span of the set of Hamiltonian vector fields corre-

sponding to the s components of the moment map F , i.e., D = 〈Xf1
, . . . , Xfs〉.
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It is indeed an integrable distribution because [Xfi , Xfj ] = X{fi,fj} = X0 = 0

for every i, j, since {fi, fj} = 0 for every i, j because they are in involution.

Then, there exists a foliation F∞ given by the integral manifolds of this distri-

bution. At each point m ∈M , it satisfies Tm(F1
m) = Dm, where F1

m is the leaf

of F1 through the point m. The leafs of F1 are called invariant submanifolds.

We can also consider the moment map F = (f1, . . . , fs), which defines a

fibration on M . Then, it defines a second foliation on M , F2. In a regular point

m ∈M , it coincides with F1.

Theorem 4.2.61. Let m be a point of a Poisson manifold (M,Π) of dimen-

sion n. Let p1, . . . , pr be functions in involution, defined on a neighborhood

of m, which vanish at m and whose Hamiltonian vector fields are linearly

independent at m. Then there exist, on a neighbourhood U of m, functions

q1, . . . , qr, z1, . . . , zn−2r, such that:

1. The n functions (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) form a system of coordi-

nates on U , centered at m,

2. The Poisson structure Π is given on U by

Π =

r∑
i=1

∂

∂qi
∧ ∂

∂pi
+

n−2r∑
i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
, (4.2.33)

where each function gij(z) is a smooth function on U and is independent

of p1, . . . , pr, q1, . . . , qr.

Remark 4.2.62. The rank of Π at m is 2r if and only if all the functions gij(z)

vanish for z = 0.

Remark 4.2.63. In general, integrable systems on Poisson manifolds do not split

in the sense of Weinstein Splitting Theorem (4.2.33), i.e., it is not possible to

separate F into F = (FS , FT ).

In a 2010 paper of Laurent-Gengoux, Miranda, Vanhaecke [LMV11], an

action-angle theorem in the general context 4.2.64 of integrable systems on

Poisson manifolds is proved, as well as for the version for non-commutative

integrable systems 4.2.65.

Theorem 4.2.64. Let (M,Π, F ) be an integrable system, where (M,Π) is a

Poisson manifold of dimension n and rank 2r and F is a moment map. Sup-

pose that, at a point m ∈M , Fm is a standard Liouville torus. Then, there ex-

ist R-valued smooth functions (p1, . . . , pn−r) and R/Z-valued smooth functions

(θ1, . . . , θr), defined in a neighborhood U of Fm, such that:
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1. The functions (θ1, . . . , θr, p1, . . . , pn−r) define an isomorphism U ' Tr ×
Bn−r,

2. The Poisson structure can be written in terms of these coordinates as

Π =

r∑
i=1

∂

∂θi
∧ ∂

∂pi
.

In particular, the functions pr+1, . . . , pn−r are Casimirs of Π (restricted

to U),

3. The leaves of the surjective submersion F = (f1, . . . , fn−r) are given by

the projection onto the second component Tr × Bn−r. In particular, the

functions p1, . . . , pn−r depend only on the functions f1, . . . , fn−r.

The functions θ1, . . . , θr are called angle coordinates, the functions p1, . . . , pr
are called action coordinates and the remaining coordinates pr+1, . . . , pn−r are

called transverse coordinates.

Proof. We denote s := n − r. Since Fm is a standard Liouville torus, on a

neighborhood U ′ of Fm in M there exist, on the one hand, Casimir functions

pr+1, . . . , ps. On the other hand, there exist F -basic functions p1, . . . , pr such

that p := (p1, . . . , ps) and F define the same foliation on U ′ and such that the

Hamiltonian vector fields Xp1 , . . . , Xpr are the fundamental vector fields of a

Tr-action on U ′, where each of the vector fields has period 1. The orbits of

this torus action are the leaves of the latter foliation. In view of the Theorem

(theorem 4.2.61), on a neighborhood U ′′ ⊂ U ′ of m in M , there exist R-valued

functions θ1, . . . , θr such that:

Π =

r∑
j=1

∂

∂θj
∧ ∂

∂pj
. (4.2.34)

On U ′′, Xpj = ∂
∂θj

, for j = 1, . . . , r. Since each of these vector fields has

period 1 on U ′, it is natural to view these functions as R/Z-valued functions,

which we do without changing the notation. Notice that the functions θ1, . . . , θr
are independent and pairwise in involution on U ′′, as a trivial consequence of

Equation 4.2.34. In particular, θ1, . . . , θr, p1, . . . , ps define local coordinates on

U ′′. In these coordinates, the action of Tr is given by:

(t1, . . . , tr) · (θ1, . . . , θr, p1, . . . , ps) = (θ1 + t1, . . . , θr + tr, p1, . . . , ps), (4.2.35)

so that the functions θi uniquely extend to smooth R/Z-valued functions satis-

fying (4.2.35) on U := F−1(F (U ′′)), which is an open subset of Fm in M . The
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extended functions are still denoted by θi. It is clear that {θi, pj} = δji on U ,

for all i, j = 1, . . . , r. Combined with the Jacobi identity, this leads to

Xpk [{θi, θj}] = {{θi, θj}, pk} = {θi, δkj } − {θj , δki } = 0,

which shows that the Poisson brackets {θi, θj} are invariant under the T-action.

But the latter vanish on U ′′, hence these brackets vanish on all of U , and we

may conclude that on U , the functions (θ1, . . . , θr, p1, . . . , ps) have independent

differentials, so they define a diffeomorphism to Tr×Bs whereBs is a (small) ball

with center 0, and that the Poisson structure takes in terms of these coordinates

the canonical form (4.2.34), as required.

The action-angle theorem can be extended to standard Liouville tori of a

non-commutative integrable system.

Theorem 4.2.65. Let (M,Π) be a Poisson manifold of dimension n, equipped

with a non-commutative integrable system F = (f1, . . . , fs) of rank r. Suppose

that, at a point m ∈ M , Fm is a standard Liouville torus. Then, there ex-

ist R-valued smooth functions (p1, . . . , pr, z1, . . . , zs−r) and R/Z-valued smooth

functions (θ1, . . . , θr), defined in a neighborhood U of Fm, such that

1. The functions (θ1, . . . , θr, p1, . . . , pr, z1, . . . , zs−r) define an isomorphism

U ' Tr ×Bs,

2. The Poisson structure can be written in terms of these coordinates as

Π =

r∑
i=1

∂

∂θi
∧ ∂

∂pi
+

s−r∑
k,l=1

φk,l(z)
∂

∂zk
∧ ∂

∂zl
,

3. The leaves of the surjective submersion F = (f1, . . . , fs) are given by the

projection onto the second component Tr×Bs. In particular, the functions

p1, . . . , pr, z1, . . . , zs−r depend only on the functions f1, . . . , fs.

The functions θ1, . . . , θr are called angle coordinates, the functions p1, . . . , pr are

called action coordinates and the remaining coordinates z1, . . . , zs−r are called

transverse coordinates.

Proof. Conditions (1) and (2) imply that, on a neighborhood U ′ of Fm in M ,

there exist, on the one hand, F -basic functions z1, . . . , zs−r and, on the other

hand, Cas-basic functions p1, . . . , pr, such that:

•
p := (p1, . . . , pr, z1, . . . , zs−r)

and F define the same foliation on U ′,
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• The Hamiltonian vector fields Xp1 , . . . , Xpr are the fundamental vector

fields of a Tr-action on U ′, where each has period 1.

The orbits of this torus action are the leaves of the latter foliation. In view of

Theorem 4.2.61, on a neighborhood U ′′ ⊂ U ′ of m in M there exist R-valued

functions θ1, . . . , θr such that

Π =

r∑
j=1

∂

∂θj
∧ ∂

∂pj
+

s−r∑
k,l=1

φk,l(z)
∂

∂zk
∧ ∂

∂zl
. (4.2.36)

The end of the proof goes along the same lines as the end of the proof of theorem

4.2.64.
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